D 43234

(Pages : 3)

Na	me	 	
-			

Reg. No.....

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2018

(CUCBCSS-UG)

Complementary Course

BCA 2C 03—COMPUTER ORIENTED STATISTICAL METHODS

(2014-2016 Admissions)

Time : Three Hours

Maximum: 80 Marks

Section A

Answer all questions. Each question carries 1 mark.

- 1. The mean of a set of observations is zero, then the variance is :
 - (a) 0. (b) 1.
 - (c) Mean squares of observations. (d) Sum of squares of observations.
- 2. Which of the following is least affected by extreme values :
 - (a) A.M. (b) Median.
 - (c) G.M. (d) H.M.

3. If A and B are two mutually exclusive events, then :

- (a) $P(A \cap B) = P(A) + P(B)$. (b) $P(A \cap B) = P(A) P(B)$.
- (c) $P(A \cap B) = 0.$ (d) $P(A \cap B) = 1.$

The sum of squares of n independent standard normal variables follows :

- (a) *t*-distribution. (b) χ^2 -distribution.
- (c) F-distribution. (d) Normal distribution.
- 5. The power of test is the probability of :
 - (a) Type I error. (b) Type II error.
 - (c) Not committing an error. (d) None of the above.
- The range of correlation coefficient is _____.
- 7. The sum of squares of deviations is minimum when the deviations are taken from ------

- 10. The standard deviation of a binomial distribution with n = 10 and p = 0.4 is -----.

 $(10 \times 1 = 10 \text{ marks})$

Turn over

 $(5 \times 2 = 10 \text{ marks})$

Section B

Answer **all** questions. Each question carries 2 marks.

11. State principle of least squares.

12. Give frequency definition of probability by stating statistical regularity.

- 13. Define moment generating function. Express it in terms of moments.
- 14. Distinguish between Statistic and parameter. Give an example for each.
- 15. Define power of a test and level of significance.

Section C

Answer any **five** questions. Each question carries 4 marks.

16. Find the AM and Median of the following data :

Class : 0-10 10-20 20-30 30-40 40-50 50-60 Frequency : 8 12 15 12 8 5

17. Find the Spearman's rank correlation of the following ranks :

Rank1:12345678910

Rank 2 : 1 3 2 4 7 6 5 8 8 10

18. Fit the line Y = A + BX to the following data :

X:1 2 3 4 5 6 7 8 9 10

Y : 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

19. Find the mean and variance of the following distribution :

X:01234567

p : .005 .005 .01 .03 .03 .01 .005 .005

20. Derive the m.g.f. of Poisson distribution. Hence find its mean and variance.

21. Write the relation between t, χ^2 and F distributions.

22. Distinguish between point estimate and interval estimate. Write the 95 % confidence interval for the proportion of binomial population.

23. (a) Define maximum likelihood estimator.

(b) State Neymann Pearson approach.

 $(5 \times 4 = 20 \text{ marks})$

Section D

Answer any five questions. Each question carries 8 marks.

24.	Fit	the	e po	olync	mial	Y = A	+ BX	+CX	X^2 to the	ne foll	lowing	data	.:			
		Х	:	-2	-1	0	1	2	3	4	5	6	7			
		Y	:	2	1.5	2	3.5	6	9.5	14	19.5	26	33.5	Xari		
25.	Fin	d t	he	coeff	icient	of co	rrelati	ion fo	or the f	follow	ving da	ta:				
		X	:	2	5	3	3.5	4	8	6	6.5	5	7			
		Y	:	3	1.5	4	7	7	9	12	11	9	10			
26.	If /	f(x,	y)	$=\frac{2}{3}($	(1+x)	e ^{-y} ,0	< x,1,	0 < y	<∞, f	ind th	ne mar	gina	l distri	bution of	f X and	Y.
27	Ar	and	dor	n sai	mple (of siz	e 100	is ta	ken fr	om a	norm	al dis	tributi	ion with	mean	80

- 27. A random sample of size 100 is taken from a normal distribution with mean 80 and standard deviation 50. Find (a) $P(\overline{X} < 85)$; (b) $P(70 < \overline{X} < 85)$; (c) $P(\overline{X} > 90)$.
- 28. Suppose a telephone exchange receives telephone calls at the rate of 3 calls per minute on an average. Then find the probability of receiving (i) at most one call in one minute ; (ii) at least one call in one minute.
- 29. A random sample of 100 male students from a college having mean 67.45 inches and standard deviation 2.93 inches. Find 95 % and 99 % confidence intervals for the true mean height.
- 30. Explain the desirable properties of a point estimate. Give examples.
- 31. A box contains 8 red, 3 white and 9 blue balls. If 3 balls are drawn at random, determine the probability that (a) all 3 are red; (b) all 3 are white; (c) 2 are red and one is white; (d) atleast one is white.

 $(5 \times 8 = 40 \text{ marks})$