\qquad
\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018 (CUCBCSS-UG)

Complementary Course

PHY 2C 02-MECHANICS, RELATIVITY, WAVES AND OSCILLATIONS
Time : Three Hours
Maximum : 64 Marks

Section A

Answer all questions.
Each question carries 1 mark.
Answer in a word or phrase.

1. The centrifugal force acting on a particle of mass m, rotating with angular velocity $\vec{\omega}$ is :
(a) $-m(\vec{\omega} \times \vec{r})$.
(b) $-m\left(\vec{\omega} \times \frac{d \vec{r}}{d t}\right)$.
(c) $-m\left(\frac{d \vec{\omega}}{d t} \times \vec{r}\right)$.
(d) $-2 m\left(\vec{\omega} \times \frac{d \vec{r}}{d t}\right)$.
2. When speed of rod along its length is increased, the length of rod :
(a) Increases.
(b) Decreases.
(c) Remains unchanged.
(d) Becomes zero.
3. The mass of an electron is double its rest mass then the velocity of the electron :
(a) $\frac{c}{2}$.
(b) $2 c$.
(c) $\frac{\sqrt{3}}{2} c$.
(d) $\sqrt{\frac{3}{2}} c$.
4. Energy density for a plane harmonic wave is
5. A train moving with constant velocity is :
(a) An inertial frame.
(b) A non-inertial frame.
(c) Something inertial and sometimes non-inertial frame.
(d) Neither inertial nor-inertial frame.
6. The total energy of a particle executing SHM is proportional to :
(a) Displacement from equilibrium position.
(b) Frequency of oscillation.
(c) Velocity in equilibrium position.
(d) Square of amplitude of motion.
7. The relativistic relation between momentum p and energy E is :
(a) $\mathrm{E}=\frac{p^{2}}{2 m}$.
(b) $\mathrm{E}=p^{2} c^{2}+m_{0}^{2} c^{4}$.
(c) $\mathrm{E}=\sqrt{p^{2} c^{2}+m_{0}^{2}} c^{4}$.
(d) $\mathrm{E}=\frac{p^{2}}{2 m}+m_{0} \mathrm{c}^{2}$.
8. Which of the following is a Galilean invariant:
(a) Velocity.
(b) Acceleration.
(c) Both of these.
(d) None of these.
9. The motion of one projectile as seen from another projectile is :
(a) A straight line.
(b) A parabola.
(c) A circle.
(d) An ellipse.
10. At what speed the length of rod becomes half of its proper length :
(a) $\frac{c}{2}$.
(b) $\frac{c}{\sqrt{2}}$.
(c) $\frac{\sqrt{3}}{2} c$.
(d) $\sqrt{\frac{3}{2}} c$.
($10 \times 1=10$ marks)

Section B

Answer all questions.
Each question carries 2 marks.
Answer in a short paragraph - three or four sentences.
11. Name the types of frames of reference. Differentiate between them.
12. Give two examples of conservative and two examples of non-conservative forces.
13. What do you mean by time dilation?
14. Explain the hypothesis of Galilean invariance.
15. What is centrifugal force ? Illustrate with example.
16. What is the significance of wave function?
17. Why was the Michelson Moreley experiment performed?

Section C

Answer any three questions.
 Each question carries 4 marks.

Answer in a paragraph of about half a page to one page.

18. Derive an equation for the energy density of a wave.
19. Write a note on electron microscope.
20. Show that motion of a particle under a central force takes place in a plane.
21. Explain the twin paradox.
22. Explain Lorentz Fitzgerald contraction and derive an expression for the same.
($3 \times 4=12$ marks)

Section D

Answer any three questions.
Each question carries 4 marks.
Problems-write all relevant formulas.
All important steps carry separate marks.
23. A particle of rest mass m is moving with a velocity 0.9 c , calculate (i) its relativistic mass; (ii) its kinetic energy.
24. The potential energy possessed by a particle moving under the influence of a conservative force is given by $\mathrm{U}(x)=x^{3}-9 x^{2}+24 x$. Find the force on the particle.
25. A pendulum is of length 50 cm . Find its period when it is suspended in (i) a lift falling at a constant velocity of $5 \mathrm{~m} / \mathrm{s}$. (ii) a lift rising at a constant acceleration of $2 \mathrm{~m} / \mathrm{s} .{ }^{2}$
26. Consider a ship moving with a uniform velocity of $18 \mathrm{~m} / \mathrm{s}$ relative to the earth. Let a ball be rolled at a speed of $2 \mathrm{~m} / \mathrm{s}$. relative to the ship, in the direction of motion of the ship. Find the speed of the ball relative to the earth, according to Galilean transformations.
27. A young man goes to the pole star and comes back to the earth on a rocket. Calculate the age difference between him and his twin brother who preferred to stay on the earth. The rocket velocity $v=(4 / 5) c$ and the distance between the earth and the pole star is 40 light years. (Light year is a unit of distance, 1 light year $=3 \times 10^{8} \times 60 \times 60 \times 24 \times 365 \mathrm{~m}$.)

$$
(3 \times 4=12 \text { marks })
$$

Section \mathbf{E}

Answer any two questions.
Each question carries 8 marks.
(Essays. Answer in about two pages).
28. What is ether hypothesis? Explain the Michelson Morley experiment.
29. Derive the time dependent Schrödinger equation.
30. Derive the differential equation of a particle executing simple harmonic motion. Also derive expression for its period, velocity and acceleration.
31. Mention the consequences of special theory of relativity and derive Einstein's mass energy relation.
($2 \times 8=16 \mathrm{marks}$)

