SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018

 (CUCBCSS-UG)
Complementary Course
 MAT 2C 02-MATHEMATICS

Time : Three Hours

Part A (Objective Type)

Answer all twelve questions.
Each question carries 1 mark.

1. Write an example for a sequence which has no upper bound.
2. Find the domain of the function $w=x y \ln z$.
3. Define the level surface of a function f.
4. State two path test for non-existence of limit.
5. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum_{n=1}^{\infty} a_{n}$.
6. $\frac{d}{d x} \sinh x=$
7. Write $\tanh x$ in terms of exponential function.
8. Find $\lim _{n \rightarrow \infty} \sqrt[n]{n}$.
9. $\int \cosh 2 x=$
10. Find $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}+2 y}{3 x-2}$.
11. Find $\frac{\partial}{\partial x} \sin 2 x y$.
12. Define conditional convergence of a series.

Part B (Short Answer Type)

Answer any nine questions.
Each question carries 2 marks.
13. Investigate the convergence of $\int_{0}^{\infty} e^{-x^{2}} d x$.
14. Show that $\lim _{n \rightarrow \infty} k=k$, where k is a constant.
15. Find $\lim _{n \rightarrow \infty} \frac{\cos n}{n}$.
16. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}$.
17. Show that the function $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ has no limit as (x, y) approaches $(0,0)$.
18. Find $\frac{\partial f}{\partial y}$ if $f(x, y)=y \sin x y$.
19. Use chain rule to find the derivative of $w=x y$ with respect to t along the path $x=\cos t, y=\sin t$. What is the derivative's value at $t=\pi / 2$?
20. Find the volume of the solid generated by revolving the region between the parabola $x=y^{2}+1$ and the line $x=3$ about the line $x=3$.
21. Show that if u is a differentiable function of x whose values are greater than 1 , then $\frac{d}{d x}\left(\cosh ^{-1} u\right)=\frac{1}{\sqrt{u^{2}-1}} \frac{d u}{d x}$.
22. Graph the sets of points whose co-ordinates satisfies the condition $2 \pi / 3 \leq \theta \leq 5 \pi / 6$ (no restriction on r).
23. Find a polar equation for the circle $x^{2}+(y-3)^{2}=9$.
24. Find the directrix of the parabola $r=\frac{25}{10+10 \cos \theta}$.

$$
(9 \times 2=18 \text { marks })
$$

Part C (Short Essay Type)

Answer any six questions.

Each question carries 5 marks.
25. Compare $\int_{1}^{\infty} \frac{d x}{x^{2}}$ and $\int_{1}^{\infty} \frac{d x}{1+x^{2}}$ with limit comparison test.
26. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ convergent or divergent.
27. Find the linearization of the function $f(x, y)=x^{2}+y^{2}+1$ at $(0,0)$.
28. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x^{2}+y^{2}, x=r-s$ and $y=r+s$.
29. Find the area of the region in the plane enclosed by the cardioid $r=2(1+\cos \theta)$.
30. Show that $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0$ if $f(x, y, z)=e^{3 x+4 y} \cos 5 z$.
31. Find the Maclaurin series for the function $f(x)=x e^{x}$.
32. Does series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3 / 2}}$ convergent.
33. Find the surface area generated by revolving the curves $x=t+\sqrt{2}, y=\frac{t^{2}}{2}+\sqrt{2 t},-\sqrt{2} \leq t \leq \sqrt{2}$ about y-axis.

$$
(6 \times 5=30 \text { marks })
$$

Part D (Essay Type)

Answer any two questions.
Each question carries 10 marks.
34. Find the length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{3 / 2}$ from $x=0$ to $x=3$.
35. Find the points of intersection of $r^{2}=4 \cos \theta$ and $r=1-\cos \theta$.
36. Find the critical points of $f(x)=x^{1 / 3}(x-4)$. Identify the intervals on which f is increasing and decreasing. Find the functions's local and absolute extrema values.

$$
(2 \times 10=20 \text { marks })
$$

