\qquad
\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018

 (CUCBCSS)Complementary Course
STS 2C 02—PROBABILITY DISTRIBUTIONS
Time : Three Hours
Maximum : 80 Marks

Section A

Answer all questions in one word.

Each question carries 1 mark.
Name the following :

1. The moments of a random variable X about origin.
2. The probability distribution in which mean is equal to its variance.
3. The distribution of $\frac{x_{1}-x_{2}}{\sqrt{2}}$ where $\mathrm{X}_{1} \sim \mathrm{~N}(1,1)$ and $\mathrm{X}_{2} \sim \mathrm{~N}(1,1)$.

Fill up the blanks :
4. If two variables X and Y are independent, then $E(X Y)=$ \qquad
5. The maximum height of the normal curve lies at the point \qquad
6. The mode of the geometric distribution $f(x)=\left(\frac{1}{2}\right)^{x} ; x=1,2, \ldots .$. is
7. If $\mathrm{X} \sim \mathrm{N}(12.5,12.25)$ and $\mathrm{Y} \sim \mathrm{N}(8.5,6.25)$, the variable $\mathrm{X}+\mathrm{Y}$ is distributed as \qquad Write True or False :
8. If X and Y are two random variables, then the covariance between the variables $a \mathrm{X}+b$ and $c \mathrm{Y}+d$ is equal to covariance between X and Y .
9. For a binomial distribution mean is always less than the variance.
10. Convergence in probability is also known as weak convergence.

Section B

Answer all questions in one sentence each.
Each question carries 2 marks.
11. Define variance of a random variable.
12. Give the properties of characteristic function.
13. Define conditional expectation.
14. Define joint central moments for the bivariate distribution.
15. Define negative binomial distribution.
16. If a random variable $X \sim N\left(40,5^{2}\right)$, find $P(45 \leq X \leq 50)$.
17. Define weak convergence.

$$
(7 \times 2=14 \text { marks })
$$

Section C
 Answer any three questions.
 Each question carries 4 marks.

18. Define moment generating function of a random variable. Prove that it does not exist always.
19. Give the properties of normal distribution.
20. If X and Y are independent Poisson variates, show that the conditional distribution of ($\mathrm{X} \mid \mathrm{X}+\mathrm{Y}$) is binomial.
21. State the weak law of large numbers and central limit theorem.
22. If $\mathrm{E}(\mathrm{X})=5, \mathrm{~V}(\mathrm{X})=3$ and if $\mathrm{P}[|\mathrm{X}-5|<h] \geq 0.99$, find the value of h.

Section D

Answer any four questions.
Each question carries 6 marks.
23. A coin is tossed until a head appears. What is the expectation of the number of tosses required?
24. X_{1} and X_{2} have a bivariate distribution given by $p\left(x_{1}, x_{2}\right)=\frac{x_{1}+3 x_{2}}{24}$; where $\left(x_{1}, x_{2}\right)=(1,1),(1,2)$, $(2,1),(2,2)$. Find the conditional mean and conditional variance of X_{1} given $X_{2}=2$.
25. Let the random variable X assumes the value ' x ' with the probability law $\mathrm{P}(\mathrm{X}=x)=q^{x-1} p$; $x=1,2,3 \ldots \ldots$ and $q=1-p$. Find the m.g.f, of X and hence find its mean and variance.
26. The mean and variance of a binomial distribution are $\frac{8}{3}$ and $\frac{16}{9}$. Find (i) $P(X=1)$ and (ii) $\mathrm{P}(\mathrm{X} \leq 1)$.
27. Assuming that the height of students is distributed as $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Out of a large number of students, 5% are under 72 inches and 10% are below 60 inches. Find the values of μ and σ.
28. Examine whether the weak law of large numbers holds $\left\{\mathrm{X}_{k}\right\}$ of independent random variables defined as follows :

$$
\mathrm{P}\left[\mathrm{X}_{k}= \pm 2^{k}\right]=2^{-(2 k+1)} \text { and } \mathrm{P}\left[\mathrm{X}_{k}=0\right]=1-2^{-2 k}
$$

$$
(4 \times 6=24 \text { marks })
$$

Section E

Answer any two questions.

Each question carries 10 marks.
29. Let X and Y be two random variables, prove that :
(i) $\mathrm{E}(\mathrm{X})=\mathrm{E}\{\mathrm{E}(\mathrm{X} \mid \mathrm{Y})\}$ and
(ii) $\mathrm{V}(\mathrm{X})=\mathrm{E}\{\mathrm{V}(\mathrm{X} \mid \mathrm{Y})\}+\mathrm{V}\{\mathrm{E}(\mathrm{X} \mid \mathrm{Y})\}$.
30. State and prove the recurrence relation for central moments for a binomial distribution.
31. Derive the m.g.f. of a normal distribution with parameters μ and σ^{2}.
32. State and prove the Chebychev's inequality.

