\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018 (CUCBCSS-UG)

Complementary Course

MAT 3C 03-MATHEMATICS
Time : Three Hours
Maximum : 80 Marks

Part A (Objective Type)

Answer all the twelve questions.
Each question carries 1 mark.

1. Write the general form of Bernoulli's differential equation.
2. Solve $y^{\prime}=\frac{x y}{2}$.
3. What is the degree of the differential equation $x^{3} y^{\prime \prime \prime} y^{\prime}+2 e^{x} y^{\prime \prime}=0$.
4. State Cayley-Hamilton theorem.
5. What is the determinant of a 2×2 matrix whose rank is 1 ?
6. What is the normal form of the matrix $\left(\begin{array}{lll}2 & 3 & 1 \\ 4 & 5 & 1\end{array}\right)$?
7. Find the resultant of the vectors $p=[4,-2,-3], q=[8,8,0]$.
8. Write the parametric representation of a straight line through the point $(4,2,0)$ and in the direction of the vector $i+j$.
9. Define gradient of a function.
10. Find the directional derivative of $f=x-y$ at $(4,5)$ in the direction of $2 i+j$.
11. Define a smooth curve.
12. State Green's theorem in plane.
($12 \times 1=12$ marks)

Part B (Short Answer Type)
 Answer any nine questions.
 Each question carries 2 marks.

13. Write the condition for the differential equation $\mathrm{M} d x+\mathrm{N} d y=0$ become exact. What is the form of its solution?
14. Find an integrating factor for $2 x y d x+3 x^{2} d y=0$ and solve it.
15. Find the characteristic roots of the matrix $\left(\begin{array}{rrr}4 & 3 & 1 \\ -4 & -3 & -1 \\ 1 & 2 & 5\end{array}\right)$.
16. Write the elementary transformations in a matrix.
17. Find the component of $a=[4,0,-3]$ in the direction of $b=[1,1,1]$.
18. Find the arc length parameter for the helix $r(t)=[a \cos t, a \sin t, c t]$.
19. Find div v where $v=x^{2} i+y^{2} j+z^{2} k$.
20. Define Jacobian.
21. Show that $\operatorname{curl}(u+v)=\operatorname{curl} u+\operatorname{curl} v$.
22. Find $\nabla^{2} f$ where $f=e^{2 x} \sin 2 y$.
23. Show that $\int_{(-1,5)}^{(4,3)} 3 z^{2} d x+6 x z d z$ is path independent.
24. Write the formula for finding the area of a plane region as a line integral over the boundary. ($9 \times 2=18$ marks)

Part C (Short Essay)

Answer any six questions.
Each question carries 5 marks.
25. Solve $(2 x-4 y+5) y^{\prime}+(x-2 y+3)=0$.
26. Solve $2 x \tan y d x+\sec ^{2} y d y=0$.
27. Find the eigen values and eigen vectors corresponding to any one eigen value of the matrix :

$$
\left(\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right)
$$

28. Use Cayley-Hamilton theorem to find A^{-1} and A^{3} where A is $\left(\begin{array}{ll}1 & 5 \\ 3 & 8\end{array}\right)$.
29. Find the speed and tangential acceleration of an object moving along the curve :

$$
r(t)=\cos t i+\sin 2 t j+\cos 2 t k
$$

30. Find unit normal vectors for the surface $z=\sqrt{\left(x^{2}+y^{2}\right)}$ at $(6,8,10)$.
31. Find the volume of the region in space bounded by the co-ordinate planes and the surfaces $y=1-x^{2}, z=1-x^{2}$.
32. Find the area of the region in the first quadrant bounded by the cardioid $r=a(1+\cos \theta)$.
33. Verify Greens theorem in the plane for $\mathrm{F}=\left[3 y^{2}, x-y^{4}\right]$ and the region is the rectangle with vertices $(1,1),(-1,1),(-1,-1),(1,-1)$.

$$
(6 \times 5=30 \text { marks })
$$

Part D

Answer any two questions.
Each question carries 10 marks.
34. Test for consistency and solve the following system :
(a) $2 x+y+z=5$
$x-y=0$
$2 x+y-z=1$
(b)

$$
\begin{array}{r}
x+2 y+3 z=14 \\
2 x-y+5 z=15 \\
-3 x+2 y+4 z=13
\end{array}
$$

35. Solve (a) $2 \sin \left(y^{2}\right) d x+x y \cos \left(y^{2}\right) d y=0, y(2)=\sqrt{\frac{\pi}{2}}$; (b) Find the angle between $3 x+5 y=0$ and $4 x-2 y=1$.
36. Verify Stoke's theorem for $\mathrm{F}=\left[y^{2},-x^{2}, 0\right]$ over the circular semi-disk $x^{2}+y^{2} \leq 4, y \geq 0, z=0$.
($2 \times 10=20$ marks $)$
