D 42007

Name.....

Reg. No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2018

(CUCBCSS-UG)

Complementary Course

MBY 4C 16 (P)-BIOSTATISTICS (PRACTICAL-II)

Time : Three Hours

Maximum : 32 Marks

Use of calculator and statistical table is permitted.

Part A

Answer **all** questions. Each question carries ½ mark.

Fill in the blanks (Questions 1-3):

- 1. In ANOVA, if between treatments mean sum of squares is 444 and variance ratio is 2.5, then within treatments mean sum of squares is ———.
- 2. If one of the regression coefficient in a bivariate distribution is 0.9 and correlation coefficient is 0.6, then value of other regression coefficient is _____.
- 3. With the usual notations, if $r_{12} = 0$ and $R_{1,23} = 0.5$, then $r_{13,2} = -----$.

State True or False (Question 4-6):

- 4. A correlation co-efficient of 0.5 means that 50% of the data are explained.
- 5. The degrees of freedom for 4×3 contingency table under chi-square test of independence of attributes is 7.
- 6. If $R_{1,23} = 0$, then X_1 is uncorrelated with X_2 and X_3 .

 $(6 \times \frac{1}{2} = 3 \text{ marks})$

Part B (Short Answer Type Questions)

Answer **all** questions. Each question carries 2 marks.

Form the ANOVA table from the following information :
Between varieties : Sum of Squares = 28, Mean Sum of Squares = 14
Within varieties: Degrees of freedom = 15
Total : Sum of Squares = 64.

Turn over

(**Pages : 3**)

8. Given the following data in a bivariate distribution :

$$\overline{\mathbf{X}} = 50.5, \ \overline{\mathbf{Y}} = 10.5, \ \sigma_x = 10, \ \sigma_y = 2 \ \text{and} \ r_{yy} = 0.6.$$

Estimate the value of X when Y = 13.5.

9. Compute the value of chi-square statistic from the following contingency table under the independence of attributes :

	Region I	Region II
Families consuming tea	56	31
Families not consuming tea	18	6

10. In a bivariate distribution, for five pairs of observations, $\overline{X} = 3$, $\overline{Y} = 11$, $\sum (X - \overline{X})^2 = 10$,

 $\Sigma (Y - \overline{Y})^2 = 374, \ \Sigma (X - \overline{X})(Y - \overline{Y}) = 60.$ Find the correlation between X and Y.

11. If $r_{12} = 0.28$, $r_{13} = 0.51$ and $r_{23} = 0.49$, compute the partial correlation coefficient $r_{23,1}$.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay)

Answer any **three** questions. Each question carries 3 marks.

- 12. Regression equations in a bivariate data are 8x 10y + 66 = 0 and 40x 18y 214 = 0. Find
 - (i) Mean values of X and Y.
 - (ii) Regression coefficients and correlation coefficient.
 - (iii) If variance of X is 9, what is variance of Y?
- 13. A random sample of 27 pairs of observations from a normal population gave a correlation coefficient of 0.6. Is this significant of correlation in the population ?
- 14. If $r_{12} = 0.5$, $r_{13} = 0.3$ and $r_{23} = 0.45$, Compute $R_{1,23}$ and $R_{3,12}$.
- 15. Out of 8,000 graduates in a town 800 are females ; out of 1,600 graduate employees 120 are females. Determine whether any distinction is made in the appointment on the basis of sex.

 $(3 \times 3 = 9 \text{ marks})$

Part D(Essay)

Answer any one question.

The question carries 10 marks.

16. (i) A survey of 800 families with four children each revealed the following distribution :

Number of boys	0	1	2	3	4
Number of girls	4	3	2	1	0
Number of families	32	178	290	236	44

Is this result consistent with the hypothesis that male and female births are equally probable ?

(ii) Find the regression line of Y on X from the following data :

Х	:	40	60	66	75	80	90	100
Y	:	80	45	65	40	85	90	70

17. The following data represent the number of units of production per day turned out by five different workmen using four different types of machines :

		Machine type				
		A	В	С	D	
Men	Ι	44	38	47	36	
	II	46	40	52	43	
	III	34	36	44	32	
	IV	43	38	46	33	
	V	38	42	49	39	

(i) Test whether the mean productivity is the same for the four different machine types.

(ii) Test whether the five men differ with respect to mean productivity.

 $(1 \times 10 = 10 \text{ marks})$