\qquad
\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018 (CUCBCSS-UG)
 Mathematics
 MAT 2B 02-CALCULUS

Time : Three Hours
Maximum : 80 Marks

Part A (Objective Type)

Answer all twelve questions.
Each question carries 1 mark.

1. Absolute maximum of the function $y=x^{2}$ on $(0,2]$ is \qquad
2. Find $d y$ if $y=x^{5}+37 x$.
3. Find the interval in which the function $y=x^{3}$ is concave up.
4. Suppose that $\int_{1}^{4} f(x) d x=-2$, evaluate $\int_{4}^{1} f(x) d x$.
5. A partition's longest subinterval is called \qquad
6. Find $\lim _{x \rightarrow-\infty} \frac{\pi \sqrt{3}}{x^{2}}$.
7. Express the limit of Riemann sums $\lim _{\|p\| \rightarrow 0} \sum_{k=1}^{n}\left(3 c_{k}{ }^{2}-2 c_{k}+5\right) \Delta x_{k}$ as an integral if P denotes a partition of the interval $[-1,3]$.
8. Find the norm of the partition $[0,1.2,1.5,2.3,2.6,3]$.
9. Define critical point of a function.
10. Evaluate $\int 5 \sec x \tan x d x$.
11. State Rolls' Theorem.
12. Define point of inflection.

Part B (Short Answer Type)

Answer any nine questions.
Each question carries 2 marks.
13. Evaluate $\lim _{x \rightarrow \infty} \frac{5 x^{2}+8 x-3}{3 x^{2}+2}$.
14. Find the absolute extrema of $h(x)=x^{2 / 3}$ on $[-2,3]$.
15. Find the interval in which $f(t)=-t^{2}-3 t+3$ is increasing and decreasing.
16. Find $d y / d x$ if $y=\int_{1}^{x^{2}} \cos t d t$.
17. Suppose $\int_{1}^{x} f(t) d t=x^{2}-2 x+1$. Find $f(x)$.
18. Evaluate $\sum_{k=1}^{4}\left(k^{2}-3 k\right)$.
19. Give an example of a function with no Riemann integral. Explain.
20. Find the function $f(x)$ whose derivative is $\sin x$ and whose graph passes through the point $(0,2)$.
21. Use Max-Min inequality to find upper and lower bounds for the value of $\int_{0}^{1} \frac{1}{1+x^{2}} d x$.
22. Show that the value of $\int_{0}^{1} \sqrt{1+\cos x d x}$ cannot possibly be 2 .
23. Find the linearization of $f(x)=\cos x$ at $x=\pi / 2$.
24. Suppose that $\dot{\mathrm{F}}(x)$ is an antiderivative of $f(x)=\frac{\sin x}{x}, x>0 . \operatorname{Express} \int_{1}^{3} \frac{\sin 2 x}{x} d x$ in terms of F .

Part C (Short Essay Type)

Answer any six questions.
Each question carries 5 marks.
25. Find the linearization of $f(x)=2-\int_{2}^{x+1} \frac{9}{1+t} d t$ at $x=1$.
26. Find the area of the region between the curve $y=x^{2}$ and the x-axis on the interval $[0, b]$.
27. Find the asymptotes of the curve $y=2+\frac{\sin x}{x}$.
28. A rectangle is to be inscribed in a circle of radius 2 . What is the largest area the rectangle can have, and what are its dimensions?
29. Show that functions with zero derivatives are constant.
30. Find the lateral surface area of the cone generated by revolving the line segment $y=x / 2,0 \leq x \leq 4$, about the x-axis.
31. Show that if f is continuous on $\left[a, b, a \neq b\right.$, and if $\int_{a}^{b} f(x) d x=0$, then $f(x)=0$ atleast once in $[a, b]$.
32. Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by x-axis and the line $y=x-2$.
33. Find the area of the surface generated by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$, about the x-axis.

$$
(6 \times 5=30 \text { marks })
$$

Part D (Essay Questions)

Answer any two questions.
Each question carries 10 marks.
34. (a) Find the curve through the point $(1,1)$ whose length integral is $\mathrm{L}=\int_{1}^{4} \sqrt{1+\frac{1}{4 x}} d x$.
(b) How many such curves are there?
35. Find the length of the curve $y=(1 / 3)\left(x^{2}+2\right)^{3 / 2}$ from $x=0$ to $x=3$.
36. Find the volume of the solid generated by revolving the regions bounded by the curve $x=\sqrt{5 y^{2}}, x \neq 0, y=-1, y=1$ about x-axis.

$$
(2 \times 10=20 \mathrm{marks})
$$

