(Pages:4)

Name.....

Reg. No.....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)

Core Course

MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY

Time : Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all **twelve** questions.

- 1. Find $\frac{d}{dx} \ln 2x$.
- 2. Define a sequence.
- 3. Find least upper bound of $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}$.
- 4. Find a formula for n^{th} term of the sequence 1, 5, 9, 13, 17,....
- 5. State Sandwich theorem for sequences.
- 6. If |r| < 1 the series $a + ar + ar^2 + ... + ar^{n-1} + ...$ converges to.....
- 7. Define conditional convergence of a series.
- 8. Write a parametrization of the circle $x^2 + y^2 = 1$.
- 9. $\lim_{n \to \infty} \sqrt[n]{n} =$
- 10. Write the polar form of the parabola $y^2 = Qax$.
- 11. Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$. If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then
 - $\sum a_n$
- 12. If $\sum |a_n|$ is convergent, then $\sum |a_n|$ is

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Part B (Short Answer Type)

Answer any **nine** questions.

- 13. Find $\int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3+2\sin\theta} d\theta.$
- 14. Find k if $e^{2k} = 10$.
- 15. Find $\int_0^{\ln 2} e^{3x} dx$.
- 16. Show that $\lim_{n \to \infty} \frac{1}{n} = 0$.

17. For what values of x do the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge ?

18. Find the series for f'(x) and f''(x) if $f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 < x < 1.$

19. Find the focus and directrix of the parabola $y^2 = 10x$.

- 20. Find the eccentricity of the hyperbola $x^2 y^2 = 1$.
- 21. Determine the conic section from the equation $xy y^2 5y + 1 = 0$.

22. Graph the sets of points whose polar co-ordinates satisfy the conditions $-3 \le r \le 2$ and $\theta = \pi/2$.

- 23. Replace the polar equation $r^2 = 4r \cos \theta$ by equivalent Cartesian equation.
- 24. Find the equation for the hyperbola with eccentricity 3/2 and directrix x = 2.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any six questions.

25. Solve the initial value problem $e^{y} \frac{dy}{dx} = 2x, x > \sqrt{3}, y(2) = 0.$

26. Show that $(-1)^{n+1} \frac{n-1}{n}$ diverges.

- 27. Find a formula for the *n*th partial sum of the series $\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + ... + \frac{1}{(n+1)(n+2)} + ...$ and use it to find the series sum if it converges.
- 28. Identify the function $f(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + ..., -1 \le x \le 1$.
- 29. The x and y axes are rotated through an angle of $\pi/4$ radians about the origin. Find an equation for the hyperbola 2xy = 9 in the new co-ordinates.
- 30. Find the surface area generated by revolving the curves $x = \cos t$, $y = 2 + \sin t$, $0 \le t < 2\pi$ about x-axis.
- 31. Show that $(1/2, 3\pi/2)$ lies on the curve $r = -\sin(\theta/3)$.
- 32. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges or diverges.

33. Check whether $\sum_{n=2}^{\infty} \frac{1+n \ln n}{n^2+5}$ converges or diverges.

 $(6 \times 5 = 30 \text{ marks})$

l'ara over

Part D (Essay Type)

Answer any **two** questions.

34. The series $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ converges to $\sin x$ for all x.

- (a) Find the first six terms of the series for $\cos x$. For what walues of x should the series converge ?
- (b) By replacing by 2x in the series for $\sin x$, find a series that converges to $\sin 2x$ for all x.

35. Find the Taylor series and Taylor polynomials generated by $f(x) = \cos x$ at x = 0.

36. Find the length of the curve curve $x = 8\cos t + 8t\sin t$, $y = 8\sin t - 8t\cos t$, $0 \le t \le \pi/2$.

 $(2 \times 10 = 20 \text{ marks})$