\qquad

Reg. No

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018 (CUCBCSS-UG)

Core Course
MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY
Time : Three Hours
Maximum : 80 Marks

Part A (Objective Type)

Answer all twelve questions.

1. Find $\frac{d}{d x} \ln 2 x$.
2. Define a sequence.
3. Find least upper bound of $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots ., \frac{n}{n+1}$.
4. Find a formula for $n^{\text {th }}$ term of the sequence $1,5,9,13,17, \ldots$.
5. State Sandwich theorem for sequences.
6. If $|r|<1$ the series $a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots$. converges to \qquad
7. Define conditional convergence of a series.
8. Write a parametrization of the circle $x^{2}+y^{2}=1$.
9. $\lim _{n \rightarrow \infty} \sqrt[n]{n}=$ \qquad
10. Write the polar form of the parabola $y^{2}=\mathrm{Qax}$.
11. Suppose that $a_{n}>0$ and $b_{n}>0$ for all $n \geq \mathrm{N}$. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n} \ldots \ldots \ldots$
12. If $\sum\left|a_{n}\right|$ is convergent, then $\sum a_{n}$ is \qquad

Part B (Short Answer Type)

Answer any nine questions.
13. Find $\int_{-\pi / 2}^{\pi / 2} \frac{4 \cos \theta}{3+2 \sin \theta} d \theta$.
14. Find k if $e^{2 k}=10$.
15. Find $\int_{0}^{\ln 2} e^{3 x} d x$.
16. Show that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
17. For what values of x do the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converge ?
18. Find the series for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ if $f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},-1<x<1$.
19. Find the focus and directrix of the parabola $y^{2}=10 x$.
20. Find the eccentricity of the hyperbola $x^{2}-y^{2}=1$.
21. Determine the conic section from the equation $x y-y^{2}-5 y+1=0$.
22. Graph the sets of points whose polar co-ordinates satisfy the conditions $-3 \leq r \leq 2$ and $\theta=\pi / 2$.
23. Replace the polar equation $r^{2}=4 r \cos \theta$ by equivalent Cartesian equation.
24. Find the equation for the hyperbola with eccentricity $3 / 2$ and directrix $x=2$.

Part C (Short Essay Type)

Answer any six questions.
25. Solve the initial value problem $e^{y} \frac{d y}{d x}=2 x, x>\sqrt{3}, y(2)=0$.
26. Show that $(-1)^{n+1} \frac{n-1}{n}$ diverges.
27. Find a formula for the $n^{\text {th }}$ partial sum of the series $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+. .+\frac{1}{(n+1)(n+2)}+\ldots$. and use it to find the series sum if it converges.
28. Identify the function $f(x)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots,-1 \leq x \leq 1$.
29. The x and y axes are rotated through an angle of $\pi / 4$ radians about the origin. Find an equation for the hyperbola $2 x y=9$ in the new co-ordinates.
30. Find the surface area generated by revolving the curves $x=\cos t, y=2+\sin t, 0 \leq t<2 \pi$ about x-axis.
31. Show that $(1 / 2,3 \pi / 2)$ lies on the curve $r=-\sin (\theta / 3)$.
32. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges or diverges.
33. Check whether $\sum_{n=2}^{\infty} \frac{1+n \ln n}{n^{2}+5}$ converges or diverges.

Part D (Essay Type)

Answer any two questions.

34. The series $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$ converges to $\sin x$ for all x.
(a) Find the first six terms of the series for $\cos x$. For what walues of x should the series converge ?
(b) By replacing by $2 x$ in the series for $\sin x$, find a series that converges to $\sin 2 x$ for all x.
35. Find the Taylor series and Taylor polynomials generated by $f\left(x^{\prime}\right)=\cos x$ at $x=0$.
36. Find the length of the curve curve $x=8 \cos t+8 t \sin t, y=8 \sin t-8 t \cos t, 0 \leq t \leq \pi / 2$.
