D41959

(Pages:4)

Name.....

Reg. No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2018

(CUCBCSS-UG)

Mathematics

MAT 4B 04-THEORY OF EQUATIONS MATRICES AND VECTOR CALCULUS **Time : Three Hours**

Maximum: 80 Marks

Part A (Objective Type)

Answer all the twelve questions. Each question carries 1 mark.

1. If α , β , γ are the roots of $2x^3 + 3x^2 - x - 1 = 0$. Find the equation whose roots are $\frac{1}{2\alpha}, \frac{1}{2\beta}, \frac{1}{2\gamma}$.

- 2. State the Fundamental theorem of algebra.
- 3. If α , β , γ are the roots of $ax^3 + 3bx^2 + 3cx + d = 0$. Find the value of :

 $(\beta - \gamma)(\gamma - \alpha) + (\gamma - \alpha)(\alpha - \beta) + (\alpha - \beta)(\beta - \gamma).$

- 4. What do you mean by reciprocal equation of second type ? Give example.
- 5. What is the rank of the identity matrix of order 20?
- 6. If $A = [a_{ij}]$ is an $m \times n$ matrix and $a_{ij} = 7$ for all i, j then rank of A is ______
- 7. A system of m homogeneous linear equations in n unknowns has only trivial solution if -
- 8. For what values of a the system of equations ax + y = 1, x + 2y = 3, 2x + 3y = 5 are consistent.
- 9. If the number of variables in a non-homogeneous system AX = B is *n* then the system possesses a unique solution if -
- 10. Find the parametric equation of a line through P (3, -4, -1) and parallel to the vector i + j + k.
- Find the unit vector tangent to the curve $r(t) = (\cos^3 t) j + (\sin^3 j) k, 0 \le t \le \frac{\pi}{2}$. 11.
- 12. Write equations relating rectangular and cylindrical co-ordinates.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Solve $4x^3 24x^2 + 23x + 18 = 0$. Given that the roots are in arithmatic progression.
- 14. Transform $x^3 6x^2 + 5x + 12 = 0$ into an equation lacking second term.
- 15. If α , β , γ are the roots of $x^3 + qx + r = 0$. Find the equation whose roots are $(\beta \alpha)^2$, $(\gamma \alpha)^2$, $(\alpha \beta)^2$.
- 16. If $A = \begin{pmatrix} -2 & -1 \\ 5 & 4 \end{pmatrix}$. Find A^{-1} .
- 17. Prove that the characteristic roots of Hermitian matrix are real.
- 18. If α is an eigen value of a non-singular matrix A, prove that $\frac{|A|}{\alpha}$ is an eigen value of adj A.
- 19. Show that the product of characteristic roots of a square matrix of order n is equal to the determinant of the matrix.
- 20. Find the value of *a* for which *r* (A) = 3 where A = $\begin{pmatrix} 2 & 4 & 4 \\ 3 & 1 & 2 \\ 1 & 0 & a \end{pmatrix}$.
- 21. Find the velocity and acceleration vectors of $r(t) = (3\cos t)i + (3\sin t)j + t^2k$.
- 22. Find a Cartesian equation for the surface $z = r^2$. And identify the surface.

23. Evaluate
$$\int_{-\pi}^{\frac{\pi}{4}} \left[(\sin t) i + (1 + \cos t) j + (\sec^2 t) k \right] dt.$$

24. Find the normal vector for $r(t) = (a \cos t)i + (a \sin t)j + bk$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essays)

Answer any **six** questions. Each question carries 5 marks.

25. If α, β, γ are the roots of $x^3 - x - 1 = 0$. Find the equation whose roots are $\frac{1 + \alpha}{1 - \alpha}, \frac{1 + \beta}{1 - \beta}, \frac{1 + \gamma}{1 - \gamma}$.

26. Solve the equation $x^2 - 12x - 65 = 0$ by Cardan's method.

27. Solve $x^3 + 6x^2 + 3x + 18 = 0$.

28. Prove that the rank of a non-singular matrix is equal to the rank of its reciprocal matrix.

29. Find the rank of
$$\begin{pmatrix} 4 & -2 & 3 \\ 2 & 0 & 1 \\ 3 & -1 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$

30. Using matrix method solve :

$$x + 2y + z = 2$$

$$3x + y - 2z = 1$$

$$4x - 3y - z = 3$$

$$2x + 4y + 2z = 4$$

31. Find the point in which the line x = 1 - t, y = 3t, z = 1 + t intersects the plane 2x - y + 3z = 6.

32. Find the distance from the point S (0, 0, 1, 2) to the line x = 4t, y = -2t, z = 2t.

33. Find the eigen values and eigen vectors of $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$.

 $(6 \times 5 = 30 \text{ marks})$

Turn over

Part D

Answer any **two** questions. Each question carries 10 marks.

34. Solve the equation $x^5 - 5x^4 + 9x^3 - 9x^2 + 5x - 1 = 0$.

35. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 0 & 5 & -1 \end{pmatrix}$ and hence evaluate A^{-1} .

36. Find the binormal vector and torsion for the space curve $r(t) = (e^t \cos t)i + (e^t \sin t)j + 2k$.

 $(2 \times 10 = 20 \text{ marks})$