C 61916

(Pages : 3)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2019

(CUCSS-PG)

Mathematics

MT 4E 14-DIFFERENTIAL GEOMETRY

(2016 Admissions)

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer **all** questions. Each question carries weightage 1.

1. Describe the level set at c = 1 for the function $f(x_1, x_2) = x_1^2 + x_2^2$.

2. Sketch the vector field on \mathbb{R}^2 given by X(p) = -p for $p \in \mathbb{R}^2$.

3. Show that the *n*—sphere $x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1$ is an *n*—surface.

4. Give an example of a connected 2-surface.

5. Define sphereical image of an n—surface.

6. Define vector field along a parametrized curve.

7. Define covariant derivative of a smooth vector field along a parametrized curve.

8. Let X be a vector field parallel along a curve α Show that $\|X\|$ is constant.

9. Show that $\nabla_{cv} f = c \nabla_v f$ for all smooth functions f and real number c.

10. Find $L_p(v)$ for p = (0, 0, 1) and v = (0, 1, 2) on the cylinder $x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 .

11. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^2$ given by $\alpha(t) = (t^2, t^3)$ for $t \in [0, 2]$.

12. Let $k_1(p) = 1$ and $k_2(p) = 1/2$ be principal curvatures of an *n*—surface S at *p*. Find the Gaussian curvature of S at *p*.

Turn over

14. Let $\phi(\theta, \psi) = (\cos \theta \sin \psi, \sin \theta, \sin \psi, \cos \psi)$ for $0 < \theta < 2\pi$ and $0 < \psi < \pi$. Describe ϕ^{-1} .

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries weightage 2.

- 15. Sketch the gradient field of the function $f(x_1, x_2) = x_1 + x_2$.
- 16. Define n—surface and give an example of a 1—surface.
- 17. Find the spherical image of an n—plane.
- 18. With the usual notations prove that $(X + Y) = (\dot{X} + \dot{Y})$.
- 19. Prove that geodesics have constant speed.
- 20. Let X' denote the covariant derivative of a vector field X along a parametrized curve α . Show that

 $(\mathbf{X} \cdot \mathbf{Y})' = \mathbf{X}' \cdot \mathbf{Y} + \mathbf{X} \cdot \mathbf{Y}'.$

- 21. Find the curvature k of the plane curve $x_1 + x_2 = 1$.
- 22. Let C be a plane curve and $p \in C$. Show that $L_p(v) = cv$ for some real number c.
- 23. Describe the normal section of an n-surface.
- 24. Let U be an open set in \mathbb{R}^n and $f: U \to \mathbb{R}$ be a smooth function. Show that $\phi: U \to \mathbb{R}^{n+1}$ defined by $\phi(p) = (p, f(p))$ is a parametrized *n*—surface in \mathbb{R}^{n+1} . (7 × 2 = 14 weightage)

Part C

Answer any two questions. Each question carries weightage 4.

- 25. (a) Define integral curve of a vector field.
 - (b) Let X be a smooth vector field on an open set U in \mathbb{R}^{n+1} . Show that there is an integral curve α on X.
 - (c) Show that for the vector field given by $X(x_1, x_2) = (-x_2, x_1)$, the parametrized curve $\alpha(t) = (\cos t, \sin t)$ is an integral curve for X.

- 26. (a) Let f, g be smooth functions from an open set U to \mathbb{R} . Let $S = f^{-1}(c) \nabla f(q) \neq 0$ for all $q \in S$. Let $p \in S$ be an extreme point of g. Show that there exists a real number λ such that $\nabla_g(p) = \lambda \nabla f(p)$.
 - (b) Using Langrange multiplier find an extreme point on the unit circle $x_1^2 + x_2^2 = 1$ for the function $g(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$.

27. Prove that :

(a) $\alpha: I \to S$ is a geodesic on S if and only if α satisfies the differential equation

 $\ddot{\alpha}(t) + (\dot{a}(t) \cdot \dot{N}(\alpha(t))) N(\alpha(t)) = 0$

for all $t \in I$ where $N = \nabla f / || \nabla f ||$.

- (b) if α is a solution of the above differential equation then α is a curve on S.
- 28. Let V be a finite dimensional vector space with dot product and $L: V \to V$ be a self adjoint linear transformation. Let $S = \{v \in V: v: v = 1\}$ and $f: S \to \mathbb{R}$ be defined by $f(v) = L(v) \cdot v$. Show that

(a) If $v_0 \in S$ is a stationary point of f then v_0 is an eigen vector of L.

(b) If $v_0 \in S$ is an eigen vector of L then f is stationary at v_0 .

 $(2 \times 4 = 8 \text{ weightage})$