FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2017

(UG-CCSS)
MM 5B 07-BASIC MATHEMATICAL ANALYSIS

Part A
 Answer all questions.

1. Define bijection.
2. Give an example of a denumerable set.
3. Give an example of a bounded below set which is not bounded above.
4. State nested interval property.
5. Is the sequence (n) convergent?
6. Give an example of an unbounded sequence that has a convergent subsequence.
7. If $\left(x_{n}\right)$ is an unbounded increasing sequence find $\lim x_{n}$.
8. Given an example of an open set which is not an interval.
9. Define Cantor set.
10. State Cauchy convergence criterion.
11. If z is real show that $z=\bar{z}$.
12. State de Moivres formula.
($12 \times 1 / 4=3$ weightage)

Part B

Answer all questions.
13. By Mathematical Induction, prove that $1+2+3+\ldots \ldots+n=\frac{n(n+1)}{2}$.
14. Determine the set $\mathrm{A}=\{x \in \mathrm{R} /|2 x+3|<7\}$.
15. Show that $\lim (1 / n)=0$.
16. Prove that a convergent sequence of real numbers is bounded.
17. Give an example of a bounded sequence that is not a Cauchy sequence.
18. Show that the set of Natural numbers is a closed set.
19. Show that $\overline{i z}=-\overline{i z}$.
20. Find $\left(\operatorname{Arg} z_{1} z_{2}\right)$.
21. If $z_{1}=2 i, z_{2}=\frac{2}{3}-i$, find $z_{1}+z_{2}$.

Part C

Answer any five questions.

22. Determine the set of all real numbers x such that $2 x+3<6$.
23. Find the infimum and supremum of $\left\{\frac{1}{n}-\frac{1}{m} ; n, m \in \mathbb{N}\right\}$.
24. Find $\lim n^{1 / n}$.
25. Is a Cauchy sequence of real numbers bounded?
26. Show that a convergent sequence of real numbers is Cauchy.
27. Sketch the set of points determined by $|z+i| \leq 3$.
28. Prove that $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$.

Part D

Answer any two questions.
29. Prove that there exists a positive real number x such that $x^{2}=2$.
30. State and prove Bolzano Weierstrass Theorem.
31. Find the exponential form of the complex number $-1-i, \frac{-1+\sqrt{3} i}{2}$.

