C 30801

(Pages : 2)

Name.....

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2017

(UG-CCSS)

MM 5B 07—BASIC MATHEMATICAL ANALYSIS

Time : Three Hours

Maximum : 30 Weightage

Part A

Answer all questions.

1. Define bijection.

2. Give an example of a denumerable set.

3. Give an example of a bounded below set which is not bounded above.

4. State nested interval property.

5. Is the sequence (n) convergent ?

6. Give an example of an unbounded sequence that has a convergent subsequence.

7. If (x_n) is an unbounded increasing sequence find $\lim x_n$.

8. Given an example of an open set which is not an interval.

9. Define Cantor set.

10. State Cauchy convergence criterion.

11. If z is real show that $z = \overline{z}$.

12. State de Moivres formula.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B

Answer all questions.

13. By Mathematical Induction, prove that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.

14. Determine the set A = $\{x \in \mathbb{R}/| 2x + 3 | < 7\}$.

15. Show that $\lim (1/n) = 0$.

Turn over

16. Prove that a convergent sequence of real numbers is bounded.

17. Give an example of a bounded sequence that is not a Cauchy sequence.

- 18. Show that the set of Natural numbers is a closed set.
- 19. Show that iz = -iz.
- 20. Find (Arg $z_1 z_2$).
- 21. If $z_1 = 2i$, $z_2 = \frac{2}{3} i$, find $z_1 + z_2$.

$(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any five questions.

22. Determine the set of all real numbers x such that 2x + 3 < 6.

- 23. Find the infimum and supremum of $\left\{\frac{1}{n} \frac{1}{m}; n, m \in \mathbb{N}\right\}$.
- 24. Find $\lim n^{\frac{1}{n}}$.

25. Is a Cauchy sequence of real numbers bounded ?

26. Show that a convergent sequence of real numbers is Cauchy.

27. Sketch the set of points determined by $|z+i| \leq 3$.

28. Prove that $\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta$.

$(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any two questions.

29. Prove that there exists a positive real number x such that $x^2 = 2$.

30. State and prove Bolzano Weierstrass Theorem.

31. Find the exponential form of the complex number $-1 - i, \frac{-1 + \sqrt{3}i}{2}$.

 $(2 \times 4 = 8 \text{ weightage})$