\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, NOVEMBER 2017
 (UG-CCSS)
 MM 5B 05-VECTOR CALCULUS

Time : Three Hours
Maximum : 30 Weightage
I. Answer all questions :

1 Find the curl of $\mathrm{F}(x, y)=\left(x^{2}-y\right) i+\left(x y-y^{2}\right) j$.
2 Examine whether $\mathrm{F}=y z i+z x j+x y k$ is conservative.
3 If $\overrightarrow{\mathrm{F}}$ is a field defined on D and $\overrightarrow{\mathrm{F}}=\nabla f$ for some scalar function f on D then f is called a \qquad —of $\overrightarrow{\mathrm{F}}$.

4 Find the gradient field of $g(x, y, z)=e^{z}-\ln \left(x^{2}+y^{2}\right)$.
5 Define gradient field of a differentiable function.
6 Define critical point.
7 Say True or False :
If a function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ then f is continuous at $\left(x_{0}, y_{0}\right)$.
8 Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y)=x^{2}+3 x y+y-1$ at $(4,-5)$.
$9 \lim _{(x, y) \rightarrow(3,4)} \sqrt{x^{2}+y^{2}-1}=$ \qquad
10 If $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ then $f(3,0,4)=$ \qquad
11 If $\vec{r}(t)=(\cos t) i+(\sin t) j+t k$ then $\lim _{t \rightarrow \frac{\pi}{4}} \vec{r}(t)=\square$.
12 Find the parametric equation for the line through $\mathrm{P}(1,2,-1)$ and $\mathrm{Q}(-1,0,1)$.
($12 \times 1 / 4=3$ weightage)
II. Answer all nine questions :

13 Find the curl of $\mathrm{F}=\left(x^{2}-y\right) i+4 z j+x^{2} k$.
14 State Green's theorem (normal form).

15 Evaluate $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}(x+y+z) d y d x d z$.
16 Write an equivalent integral for $\int_{0}^{1} \int_{2}^{4-2 x} d y d x$ with the order of integration reversed.
17 Find the direction in which $f(x, y)=x^{2}+x y+y^{2}$ increases most rapidly at $p_{0}(-1,1)$.
18 If $w=x^{2}+y^{2}+z^{2}$ and $z=x^{2}+y^{2}$ find $\left(\frac{\partial w}{\partial y}\right)_{z}$.
19 If $w=x y+\frac{e^{y}}{y^{2}+1}$ find $\frac{\partial^{2} w}{\partial x \partial y}$.
20 Write the range of the function $f(x, y)=x y$.
21 Find the length of one turns of the helix $\vec{r}(t)=(\cos t) i+(\sin t) j+t k$.

$$
(9 \times 1=9 \text { weightage })
$$

III. Answer any five questions :

22 Evaluate $\iint_{\mathrm{R}} e^{x^{2}+y^{2}} d y d x$ where R is the semi-circular region bounded by the x-axis and the curve $y=\sqrt{1-x^{2}}$.

23 Find the local extreme values of the function $f(x, y)=x y-y^{2}-x^{2}-2 x-2 y+4$.
24 Find $\frac{d w}{d t}$ at $t=\pi$. Given $w=x^{2}+y^{2}, x=\cos t, y=\sin t$.
25 Find the linearization of $f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3$.
26 Show that $f(x, y)=\left\{\begin{array}{cl}\frac{2 x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ is discontinuous at the origin.
27 Find the torsion for the space curve $\vec{r}(t)=(3 \sin t) i+(3 \cos t) j+4 t k$.
28 Find T and N for the plane curve $\vec{r}(t)=t i+(\ln \cos t) j,-\frac{\pi}{2}<t<\frac{\pi}{2}$.

$$
(5 \times 2=10 \text { weightage })
$$

IV. Answer any two questions :

29 Find the area of the cap cut from the hemisphere $x^{2}+y^{2}+z^{2}=2, z \geq 0$, by the cylinder $x^{2}+y^{2}=1$.

30 Find the work done by $\mathrm{F}=\left(y-x^{2}\right) i+\left(z-y^{2}\right) j+\left(x-z^{2}\right) k$ over the curve $\vec{r}(t)=t i+t^{2} j+t^{3} k, 0 \leq t \leq 1$ from $(0,0,0)$ to $(1,1,1)$.

31 Find an upper bound for the magnitude of the error E in the approximation $f(x, y) \approx \mathrm{L}(x, y)$ over the rectangle R. Given $f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3, \mathrm{P}_{0}(3,2) . \mathrm{R}:|x-3| \leq 0.1,|y-2| \leq 0.1$.

$$
(2 \times 4=8 \text { weightage })
$$

