(Pages: 3)

Name.....

FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, NOVEMBER 2017

(UG-CCSS)

MM 5B 05-VECTOR CALCULUS

Time : Three Hours

Maximum : 30 Weightage

I. Answer all questions :

- 1 Find the curl of $\mathbf{F}(x, y) = (x^2 y)i + (xy y^2)j$.
- 2 Examine whether $\mathbf{F} = yzi + zxj + xyk$ is conservative.
- 3 If \vec{F} is a field defined on D and $\vec{F} = \nabla f$ for some scalar function f on D then f is called a of \vec{F} .
- 4 Find the gradient field of $g(x, y, z) = e^{z} \ln(x^{2} + y^{2})$.
- 5 Define gradient field of a differentiable function.
- 6 Define critical point.
- 7 Say True or False :

If a function f(x, y) is differentiable at (x_0, y_0) then f is continuous at (x_0, y_0) .

- 8 Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y) = x^2 + 3xy + y 1$ at (4, -5).
- 9 $\lim_{(x,y)\to(3,4)}\sqrt{x^2+y^2-1} =$ ------.
- 10 If $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ then f(3, 0, 4) = -----.
- 11 If $\vec{r}(t) = (\cos t) i + (\sin t) j + tk$ then $\lim_{t \to \frac{\pi}{4}} \vec{r}(t) = ----$.

12 Find the parametric equation for the line through P(1, 2, -1) and Q(-1, 0, 1).

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

- II. Answer all nine questions :
 - 13 Find the curl of $\mathbf{F} = (x^2 y)i + 4zj + x^2k$.
 - 14 State Green's theorem (normal form).

Turn over

C 30799

15 Evaluate $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} (x+y+z) dy dx dz$.

16 Write an equivalent integral for $\int_{0}^{1} \int_{0}^{4-2x} dy dx$ with the order of integration reversed.

- 17 Find the direction in which $f(x, y) = x^2 + xy + y^2$ increases most rapidly at $p_0(-1, 1)$.
- 18 If $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$ find $\left(\frac{\partial w}{\partial y}\right)_z$.
- 19 If $w = xy + \frac{e^y}{y^2 + 1}$ find $\frac{\partial^2 w}{\partial x \partial y}$.
- 20 Write the range of the function f(x, y) = xy.
- 21 Find the length of one turns of the helix $\vec{r}(t) = (\cos t) i + (\sin t) j + tk$.

$$(9 \times 1 = 9 \text{ weightage})$$

III. Answer any five questions :

- 22 Evaluate $\iint_{R} e^{x^2 + y^2} dy dx$ where R is the semi-circular region bounded by the x-axis and the curve $y = \sqrt{1 x^2}$.
- 23 Find the local extreme values of the function $f(x, y) = xy y^2 x^2 2x 2y + 4$.
- 24 Find $\frac{dw}{dt}$ at $t = \pi$. Given $w = x^2 + y^2$, $x = \cos t$, $y = \sin t$.
- 25 Find the linearization of $f(x, y) = x^2 xy + \frac{1}{2}y^2 + 3$.
- 26 Show that $f(x, y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ is discontinuous at the origin.
- 27 Find the torsion for the space curve $\vec{r}(t) = (3\sin t)i + (3\cos t)j + 4tk$.
- 28 Find T and N for the plane curve $\vec{r}(t) = t i + (\ln \cos t) j, -\frac{\pi}{2} < t < \frac{\pi}{2}$.

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Answer any two questions :
 - 29 Find the area of the cap cut from the hemisphere $x^2 + y^2 + z^2 = 2, z \ge 0$, by the cylinder $x^2 + y^2 = 1$.
 - 30 Find the work done by $F = (y x^2)i + (z y^2)j + (x z^2)k$ over the curve $\vec{r}(t) = ti + t^2j + t^3k, 0 \le t \le 1$ from (0, 0, 0) to (1, 1, 1).
 - 31 Find an upper bound for the magnitude of the error E in the approximation $f(x, y) \approx L(x, y)$ over the rectangle R. Given $f(x, y) = x^2 - xy + \frac{1}{2}y^2 + 3$, $P_0(3, 2) \cdot R : |x-3| \le 0.1, |y-2| \le 0.1$.

 $(2 \times 4 = 8 \text{ weightage})$