D 50601

(Pages : 3)

Name.....

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)

MAT 5B 07-BASIC MATHEMATICAL ANALYSIS

Time : Three Hours

Maximum : 120 Marks

Part A

Answer all the twelve questions. Each question carries 1 mark.

1. Fill in the blanks : Supremum of the set $S = \{1/m - 1/n; m, n \in N\}$ is ———.

2. Determine the set $A = \{x \in \mathbb{R} : |2x + 3| < 7\}.$

3. The Set of all real numbers which satify the inequality $0 \le a < \epsilon, \forall \epsilon > 0$, then a = -----.

4. Fill in the blanks : The Supremum property of R states that ------.

- 5. State the Trichotomy Property of R.
- 6. Give the condition for a subset of R to be an Interval of R.
- 7. State the general Arithmetic-Geometric mean Inequality of real numbers .
- 8. Fill in the blanks : The Characterization Theorem of Open sets states that ------
- 9. State the Archimedian Property of positive Integers.

10. If c > 0, then $\lim (c^{1/n}) = -----.$

- 11. State the Bolzano-Weierstrass Theorem on Sequence .
- 12. Fill in the blanks : The Exponential form of -1 i = --

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any **ten** questions. Each question carries 4 marks.

- 13. State and prove Bernoulli's Inequality of Real numbers.
- 14. Show that there does not exist a rational number *r* such that $r^2 = 2$.
- 15. If $a, b \in \mathbb{R}$, then prove that $||a| |b|| \le |a b||$.

Turn over

- 16. Prove that a real sequence can have atmost one limit.
- 17. If $x \in \mathbb{R}$ then prove that there exists $n_x \in \mathbb{N}$ such that $x < n_x$.
- 18. State and prove the "Betweeness Property" of Irrational numbers.
- 19. If $X = (x_n)$ is a convergent sequences of real numbers satisfying $\lim (x_n) = x$, then show that $\lim (|x_n|) = |x|$.
- 20. Prove that the set of irrational numbers is uncountable.
- 21. Let A and B be bounded non-empty subsets of real numbers such that $a \leq b$, $\forall a \in A, b \in B$. Prove that Sup A \leq Inf B.
- 22. Discuss the convergence of $X = (x_n)$ defined by $x_n = n$, if n odd and $x_n = 1/n$, if n even.
- 23. Show that every bounded sequence of real numbers has a converging sub-sequence.

24. Test the convergence of the sequence $\left(\frac{\sin n}{n}\right)$.

25. Define Cauchy sequence test whether (1 / n) is a Cauchy sequence or not.

26. Find all values of $(-8i)^{\frac{1}{3}}$.

 $(10 \times 4 = 40 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 7 marks.

- 27. State and prove the Nested Interval Property.
- 28. Define denumerable set. Show that the set Q of rational numbers is denumerable.
- 29. If the set A_m is countable for each $m \in N$, then prove that $A = U_{m=1}^{m=\infty} A_m$ is countable.
- 30. $X = x_n$ and $Y = y_n$ be sequences of real numbers converges to x and y respectively, then prove that X.Y converges to xy.

- 31. (a) Give an example of a convergent sequence (x_n) of positive real numbers with $\lim \left(\frac{x_{n+1}}{x_n}\right) = 1$.
 - (b) Give an example of a dververgent sequence (x_n) of positive real numbers with $\lim_{x \to \infty} \left(\frac{x_{n+1}}{x}\right) = 1$.
 - (c) Give your comments about the property of the sequence (x_n) of positive real numbers with
 - $\lim\left(\frac{x_{n+1}}{x_n}\right) = 1.$
- 32. If $X = (x_n)$ is a real sequence and $X_m = (x_{m+n} : n \in \mathbb{N})$ is the *m*-tail of X; $m \in \mathbb{N}$, then show that X_m converges to x if and only if X converges to x.
- 33. Find a sequence (x_n) of real numbers such that $\lim_{n \to 1^+} |x_n| = 0$, but not a Cauchy sequence.
- 34. (a) Find the Arg Z, if $Z = \frac{i}{-2-2i}$.
 - (b) Express the complex number $\left(\sqrt{3+i}\right)^7$ in Rectangular form.
- 35. Discuss the convergence of the following sequences whose n'th terms are defined by

(a)
$$x_n = \left(1 + \frac{1}{n^2}\right)^{2n^2}$$
 and (b) $y_n = \frac{\log n}{n}$.

 $(6 \times 7 = 42 \text{ marks})$

Part D

Answer any **two** questions. Each question carries 13 marks.

- 36. State and prove the Cauchy convergence criterion for sequence.
- 37. (a) Show that the unit interval [0,1] is uncountable.
 - (b) State and prove the Ratio Test for the convergence of real sequence.
- (a) Define closed sets in R. Show that the Intersection of an arbitrary collection of closed sets in R is closed.
 - (b) Show by an example that the union of infinitely many closed sets in R need not be closed.

 $(2 \times 13 = 26 \text{ marks})$