\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

 (CUCBCSS—UG)MAT 5B 06-ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 120 Marks

Section A
 Answer all the twelve questions.
 Each question carries 1 mark.

1. Define subgroup of a group.
2. Fill in the blanks : The units in the ring of integers \mathbb{Z} are
3. Write the order of the permutation $(1,2)(198)$ in S_{9}.
4. Give an example of a finite group of order 4 which is not cyclic.
5. Calculate the remainder obtained when 45^{72} is divided by 73 .
6. Compute $(1,4)(7,5)(2,5,7)$ in S_{7}.
7. What is the characteristic of the ring $\left\langle\mathbb{Z}_{9},+_{9}, \times_{9}\right\rangle$.
8. Give an example for an integral domain which is not a field.
9. What is the necessary condition for a homomorphism ϕ from a group G to G^{\prime} to be injective.
10. Write two equivalent conditions for the subgroup of a group to be a normal subgroup.
11. What is the index of A_{n} in S_{n}.
12. Denne a cyclic group and give an example.

Section B

Answer any ten out of fourteen questions.

Each question carries 4 marks.
13. Let S be a set and let f, g and h be functions mapping S into S. Prove that $(f o g) o h=f o(g o h)$.
14. Show that every group of prime order is abelian.
15. Draw the group table for S_{3}.
16. Define * by $a * b=\frac{a b}{3}$ then show that Q^{+}, the set of positive rationals, with operation $* s$ a group.
17. Show that A_{n} is a normal subgroup of S_{n} and find a group to which $\mathrm{S}_{n} / \mathrm{A}_{n}$ is isomorphic.
18. Define a field. Show that $(a+b)^{2}=a^{2}+2 a b+b^{2}$ in any field using the axioms of the field.
19. Give an example of non-commutative finite ring. Establish that it is so.
20. Give any necessary and sufficient condition for a ring R to have no zero divisors. Justify your claim.
21. Find a formula for identifying units in the ring of guassian integers $\{a+i b: a, b \in \mathbb{Z}\}$.
22. Write all the left cosets of $3 \mathbb{Z}$ in \mathbb{Z}.
23. Show that factor group of a cyclic group is cyclic.
24. Solve : $x^{2}=i$ in S_{3} where i is the identity.
25. Define group homomorphism and state fundamental theorem of homomorphism.
26. Is Q , the set of rationals, the field of quotients for integers ? Justify your claim.

$$
(10 \times 4=40 \text { marks })
$$

Section C

Answer any six out of nine questions.
Each question carries 7 marks.
27. Show that the binary structure $<\mathbb{R},+>$ with operation the usual addition is isomorphic to the structure $<\mathbb{R}^{+}$, , $>$where is the usual multiplication.
28. Define order of an element in any group G. Show that in a finite group G, order of any element divides order of G.
29. Show that the subset S of $M_{n}(\mathbb{R})$ consisting of all invertible $n \times n$ matrices under matrix multiplication is a group.
30. Show that every permutation σ of a finite set is a product of disjoint cycles.
31. Let G and G^{\prime} be groups and let $\Phi: \mathrm{G} \longrightarrow \mathrm{G}^{\prime}$ be one to one function such that $\Phi(x y)=\Phi(x) \Phi(\mathrm{y})$ for all $x, y \in \mathrm{G}$. Then prove that $\Phi[\mathrm{G}]$ is a subgroup of G^{\prime} and Φ provides an isomorphism of G with $\Phi\left[G^{\prime}\right]$.
32. Show that every proper subgroup of a group G , with $\mathrm{o}(\mathrm{G})=p q$ where p and q are prime, is cyclic.
33. Solve the equation : $x^{2}-5 x+6=0$ completely in \mathbb{Z}_{12}.
34. Establish a formula for computing the number of zero divisors in the ring \mathbb{Z}_{n} by giving its proof.
35. Give a necessary and sufficient condition for union of two subgroups of a group to be a subgroup.

$$
(6 \times 7=42 \text { marks })
$$

Section D

Answer any two out of three questions.
 Each question carries 13 marks.

36. (a) Find the index of the subgroup generated by $\sigma=(1,2,5,4)(2,3)$ in S_{5}.
(b) Write all the subgroups of Z_{10}.
37. State and prove Cayley's theorem in detail.
38. (a) List all the units in the matrix ring $\mathrm{M}_{2}\left(\mathbb{Z}_{2}\right)$.
(b) Show that every finite integral domain is a field.
