Name	

Reg. No.....

FOURTH SEMESTER B.B.A. DEGREE EXAMINATION, APRIL 2019

(CUCBCSS—UG)

B.B.A.

BBA IV C 04-MANAGEMENT SCIENCE

Time:	Three H	Iours		Maximum: 80 Marks
, *v			Part I	
				questions. ries 1 mark.
1.	Decisio	n variables are :		
	(a)	Controllable.	(b)	Uncontrollable.
	(c)	Parameters.	(d)	None of the above.
2.	The ap	plication of OR techniques involv	es	—— approach.
	(a)	Individual.	(b)	Team.
	(c)	Critical.	(d)	None of the above.
3.		— is a method of analyzing the the future movement of the same		t movement of the same variable in an effort to le.
	(a)	Goal programming.	(b)	Markov analysis.
	(c)	Replacement theory.	(d)	Queuing theory.
4.	A const	raint in an LP model restricts:		
	(a)	Value of objective function.	(b)	Value of decision variable.
	(c)	Use of available resource.	(d)	All of the above.
5.	A linea	r programming model does not co	ntain w	which of the following components?
	(a)	Data.	(b)	Decisions.
	(c)	Constraints.	(d)	A spread sheet.
6.	-	— is a series of related activities	which	result in some product or services.
	(a)	Network.	(b)	Transportation model.
	(c)	Assignment.	(d)	None of these.

Turn over

 $(8 \times 2 = 16 \text{ marks})$

			Z		C 0110
7.	PERT	emphasis on ———.			,
	(a)	Time.	(b)	Activity.	
	(c)	(a) and (b).	(d)	None of the above.	
8.	For decoptimis		ident	ify the decision rule that is appropriate	for th
	(a)	Laplace.	(b)	Maximax.	*
	(c)	Minimax regret.	(d)	Maxmin.	
9.	The mi	nimum expected opportunity loss is	s:		
	(a)	Equal to EVPI.	(b)	Minimum regret.	
	(c)	Equal to EMV.	(d)	Both (a) and (b).	
10.	Game t	theory models are classified by the	:	•	
	(a)	Number of players.	(b)	Sum of all payoff.	
	(c)	Number of strategies.	(d)	All of the above.	
				$(10\times 1=1$	0 marks
		Part II (Short	Ansv	ver Questions)	
		Answer any Each questio	_		
11.	What a	re the characteristics of Operations	s rese	arch technique?	
12.	Disting	ruish between iconic model and ana	alogue	model.	
13.	What a	re the main properties of linear pro	ogram	ming problems?	
14.	Define	a dummy activity.			
15.	Define	critical path method.			
16.	Define	Programme Evaluation and Review	w Tec	hnique.	
17.	What a	re the limitations of PERT/CPM?			

18. Define pay-off.

19. Define Expected Monetary Value (EMV).

20. What is meant by a decision tree?

Part III (Short Essays)

Answer any six questions. Each question carries 4 marks.

- 21. Define Operations Research and discuss its scope and limitations.
- 22. A paint manufacturer produces two types of paint, one type of standard quality (S) and the other of top quality (T). To make these paints, he needs two ingredients, the pigment and the resin. Standard quality paint requires 2 units of pigment and 3 units of resin for each unit made, and is sold at a profit of R1 per unit. Top quality paint requires 4 units of pigment and 2 units of resin for each unit made, and is sold at a profit of R1.50 per unit. He has stocks of 12 units of pigment, and 10 units of resin. Formulate the above problem as a linear programming problem to maximize his profit?
- 23. Construct the network diagram for a project with the following activities:

Activity	Description	$Predecessor\ activity$
Α	Finish Component Development	
В	Design marketing programme	Α
C	Design production system	Α
\mathbf{D}	Select Advertising media	В
E	Initial production run	C
\mathbf{F}	Release component to market	D, E

24. Solve the game with the following pay-off matrix:

.*			F	Player B			
	Stra			trategies	tegies		
		I	II	III	IV	V	
	1	2	3	8	7	0	
Player A Strategies	2	1	7	5	2	3	
	3	4	2	3	5	1	
	4	6	4	5	4	7	

25. By using the North West Corner Method determine the basic feasible solution:

	Retail Agency						
Factories	1	2	3	4	5	Capacity	
1	1	9	13	36	51	50	
2	24	12	16	20	1	100	
3	14	33	1	23	26	150	
Requirement	100	60	50	50	40	300	

Turn over

- 26. What is decision-making under risk and explain different methods to solve it?
- 27. Describe MODI method to solve the Transportation problem.
- 28. What are the different techniques involved in Operations Research?

 $(6 \times 4 = 24 \text{ marks})$

Part IV (Long Essays)

Answer any **two** questions. Each question carries 15 marks.

29. Solve graphically the following LPP

$$Maximize Z = 40X_1 + 80X_2$$

subject to:

$$2X_1 + 3X_2 \le 48$$

$$X_1^{} \leq 15$$

$$X_2 \leq 10$$

$$X_1 \ge 0, \, X_2 \ge 0.$$

30. Find the optimum solution of the following TP:

						Supply
	1	9	13	36	51	50
	24	12	16	20	1	100
	14	33	1	23	26	150
Demand	100	70	50	40	40	300

31. For the past 200 days, the sales of cakes (1 kg) from the Lovely Bakery has been as follows:

Daily sales : 0 100 200 300 400

No. of days : 10 60 60 50 20

- (a) Calculate the expected sale of cakes.
- (b) Production cost per cake (1 kg) are Rs. 5 and sale price is Rs. 10 per cake, and any cake unsold at the end of the day is contracted to a local farmer, who pays Rs. 2 per cake. Draw up a pay-off table for each sales/production combination.
- (c) Compute the expected profit arising from each level of production and determine the optimal policy.

 $(2 \times 15 = 30 \text{ marks})$