D 51252

(Pages: 3)

Name.....

Reg. No.....

THIRD SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)

Core Course

BCA 3B 04-DATA STRUCTURES USING C++

(2014 Admissions)

Time : Three Hours

Maximum : 80 Marks

Part A

Answer all questions. Each question carries 1 mark.

1.	The total	number	of nodes	in th	e binary	tree	which	has	of level	five	is	:

(a)	32.		(b)	16.	
(c)	31.		(d)	64.	

2. Data structures are used for BFS :

(a)	Struct.	(b)	Queue.
(c)	Stack.	(d)	Array.

3. Which is the postfix notation of ((A * (B + C)) / D):

(a)	A B C + $*$ D /.		(b)	AB + C * D/.

__is a name of abstract data type.

(c)	ABC D * /.	(d)	ABCD / * +.

4.

(

(a)	Array.	(b)	Class.

(c) Enumerated. (d) File.

5. Two main measures for the efficiency of an algorithm are :

(a) Processor and memory. (b) Complexity and capacity.

- (c) Time and space. (d) Data and space.
- 6. If h is any hashing function and is used to hash n keys in to a table of size m, where n < = m, the expected number of collisions involving a particular key x is :

(a) Less than 1. (b) Less than n.

)]) Less than $n/2$.
, ,) Less u

Turn over

7. Which of the following is false about a binary search tree ?

- (a) The left child is always lesser than its parent.
- (b) The right child is always greater than its parent.
- (c) The left and right sub-trees should also be binary search trees.
- (d) None of the mentioned.
- 8. What is the time complexity of inserting a node in a doubly linked list?
 - (a) O(nlogn). (b) O(logn).
 - (c) O(n). (d) O(1).
- 9. What is a sparse array?
 - (a) Data structure for representing arrays of records.
 - (b) Data structure that compactly stores bits.
 - (c) An array in which most of the elements have the same value.
 - (d) None of the mentioned.
- 10. Which of the following properties does a simple graph not hold ?
 - (a) Must be connected.
 - (b) Must be un weighted.
 - (c) Must have no loops or multiple edges.
 - (d) All of the mentioned.

$(10 \times 1 = 10 \text{ marks})$

Part B

Answer all questions. Each question carries 2 marks.

- 11. What are linear and non linear data Structures ?
- 12. What is algorithm?
- 13. Discuss about the memory management of one dimensional array.
- 14. What is sparse matrix ?
- 15. Represent a queue with 10 elements.

 $(5 \times 2 = 10 \text{ marks})$

Part C

Answer any **five** questions. Each question carries 4 marks.

- 16. What are the various operations that can be performed on different Data Structures?
- 17. What is a Queue, how it is different from stack and how is it implemented?
- 18. Discuss about the implementation of priority queue?
- 19. Define array ? Explain about various types of arrays with memory allocation ?
- 20. How polynomial represented in dynamic management system. Write algorithm for adding two polynomials.
- 21. Discuss about De-queue and Priority Queue.
- 22. Write a program to find an element using binary search concept.
- 23. Define graph data structure ? Discuss about its applications ?

 $(5 \times 4 = 20 \text{ marks})$

Part D

Answer any **five** questions. Each question carries 8 marks.

- 24. What are the different binary tree traversing techniques.
- 25. Write an algorithm for insertion sort?
- 26. Discuss about insertion and deletion algorithms of queue.
- 27. Compare merge sort and radix sort.
- 28. Write a program to find transpose of a sparse matrix.
- 29. Write an algorithm to implement quick sort. Explain it with an example.
- 30. Write an algorithm to insert nodes into doubly linked list.
- 31. What are the various data representation methods.

 $(5 \times 8 = 40 \text{ marks})$