VISCOSITY

Dr. Litty Mathew Irimpan Assistant Professor in Physics St. Mary's College, Thrissur

Streamline flow

- Slow and steady flow
- Liquid flow-flow of different layers
- In a layer- all the particle has same velocity
- Different layers- velocities different

Velocities of layers increases as distance from the fixed surface increases

Velocity Gradient $=\frac{\text { Change of velocity }}{\text { distance }}=\frac{d v}{d x}$
Layer in contact with fixed surface- stationary

Liquid flow in a tube

- The layers are coaxial cylindrical shells
- Layer in contact with the tube is stationary
- Velocity increases towards the axis

Velocities of layers increases towards the axis

Viscosity

- Any layer- retarded by below layer
- accelerated by above layer
- Net tangential force which opposes the motion
- Viscosity - Property of a liquid by virtue of which it opposes the relative motion between its different layers

Coefficient of Viscosity

- According to Newton,

Viscous force \propto area \times velocity gradient

$$
F \propto A \frac{d v}{d x}
$$

$F=-\eta A \frac{d v}{d x}$ (Newton's law of viscous flow in stream line motion)

- Negative sign-viscous force is opposite to velocity
- When $A=1, \frac{d v}{d x}=1, \quad|F|=\eta$
- Coefficient of Viscosity- Tangential force per unit area to maintain unit velocity gradient between the layers of the liquid

Unit \& Dimension

$F=-\eta A \frac{d v}{d x} \quad \eta=-\frac{F}{A \frac{d v}{d x}}$

- Unit of $\eta=\frac{N}{m^{2} \frac{m s^{-1}}{m}}=\frac{N}{m^{2} s^{-1}}=\frac{N s}{m^{2}}=$ Pascal second=Poiseuille

Dimension of $\eta=\frac{M L T^{-2}}{L^{2} \frac{L T^{-1}}{L}}=\frac{M L T^{-2}}{L^{2} T^{-1}}=M L^{-1} T^{-1}$

Poiseuille's Equation
 Rate of flow of a liquid through a tube

- Consider a liquid of

Coefficient of viscosity η, flowing through a tube of

Length-l
Radius- r
Pressure difference across 2 ends-P

Poiseuille's Equation
 Rate of flow of a liquid through a tube

- Assumptions
\checkmark The flow of liquid is steady and streamline
\checkmark The tube is horizontal, so that gravity does not affect the flow of liquid
\checkmark The liquid layer in contact with the tube remains stationary
\checkmark The pressure is constant over any cross
 section, so that there is no radical flow of liquid.

The liquid yields only small shearing stress

Poiseuille's Equation

Rate of flow of a liquid through a tube

- Consider a cylindrical layer of x-radius
v - velocity of all points in this layer
- Area of the layer $A=2 \pi x l$
- Viscous force acting on this layer

$$
F=-\eta A \frac{d v}{d x}=-\eta 2 \pi x l \frac{d v}{d x}
$$

Poiseuille's Equation

Rate of flow of a liquid through a tube

- Due to thepressure difference between the ends of the tube, there is a forward
 force
- Force due to Pressure difference,

$$
F=\pi x^{2} P
$$

- When the flow of the liquid is steady and streamline, these two forces are equal and opposite.

$$
\begin{array}{r}
-\eta 2 \pi x l \frac{d v}{d x}=\pi x^{2} P \\
d v=-\frac{P}{2 \eta l} x d x
\end{array}
$$

Poiseuille's Equation

Rate of flow of a liquid through a tube

- Integrating,

$$
v=-\frac{P x^{2}}{4 \eta l}+C_{1}
$$

- To find C_{1}-Constant of Integration
$>$ when $X=r, V=0$ (The liquid layer in contact with the tube remains stationary)

$$
\begin{array}{r}
0=-\frac{P r^{2}}{4 \eta l}+C_{1} \quad C_{1}=\frac{P r^{2}}{4 \eta l} \\
v=-\frac{P x^{2}}{4 \eta l}+\frac{P r^{2}}{4 \eta l}=\frac{P}{4 \eta l}\left(r^{2}-x^{2}\right)
\end{array}
$$

This is equation for a parabola. It shows that the velocity distribution curve is parabolic

Poiseuille's Equation
 Rate of flow of a liquid through a tube

- Imagine a cylindrical shell Of radius x and thickness dx
- Cross sectional area of the shell, $d A=2 \pi x d x$
- Volume of liquid flowing through this area per second

$$
d V=v d A=\frac{P}{4 \eta l}\left(r^{2}-x^{2}\right) 2 \pi x d x=\frac{\pi P}{2 \eta l}\left(r^{2}-x^{2}\right) x d x
$$

- Volume of liquid flowing through the tube per second= Integrating the expression within the limit $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{r}$

$$
\begin{aligned}
V=\frac{\pi P}{2 \eta l} \int_{0}^{r}\left(r^{2}-x^{2}\right) x d x & =\frac{\pi P}{2 \eta l} \int_{0}^{r}\left(r^{2} x-x^{3}\right) d x=\frac{\pi P}{2 \eta l}\left[\frac{r^{2} x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{r} \\
V & =\frac{\pi P r^{4}}{8 \eta l}
\end{aligned}
$$

Determination of coefficient of viscosityPoiseuille's method

- Vessel A
- Constant Pressure head h-maintained by outflow arrangement
- Height of pressure head can be varied by adjusting 0
- Capillary tube-T of length-l, radius-r fixed horizontally near the bottom of vessel
- A beaker of known weight is placed below the free end of the capillary tube

Determination of coefficient of viscosityPoiseuille's method

Inflow

- The weight of the dry beaker is taken
- The liquid flowing through the tube is collected for a known time
- The mass of the liquid collected is calculated
- Volume of the liquid $=\frac{\text { Mass }}{\text { Density }}$
- Rate of flow $=\frac{\text { Volume of the liquid }}{\text { Time }}$
- Coefficient of Viscosity,

$$
\eta=\frac{\pi P r^{4}}{8 V l}
$$

Derivation of Stoke's Equation

- Consider a spherical body fall through a viscous medium
- Assumptions
- The spherical body is rigid and smooth
- There is no slip between spherical body \& medium’
- The medium through which the body moves is of infinite extent
- The medium is homogeneous
- The diameter of the body is large compared with intermolecular distance of the medium
- No waves or eddy currents set up in the medium during the motion of the body

Derivation of Stoke's Equation

- When a body falls through viscous medium, motion is opposed by viscous force

$$
F=-\eta A \frac{d v}{d x}
$$

- F increases with velocity
- When the viscous force=Gravitational force, Body attains constant velocity -Terminal Velocity
- According to Stoke's law,
- Viscous force,

$$
F \propto v^{a} r^{b} \eta^{c}
$$

$$
F=K v^{a} r^{b} \eta^{c}
$$

F-Viscous Force
v-terminal velocity
r-radius
η-Coefficient of Viscosity
K-Dimensionless constant

$$
F=K v^{a} r^{b} \eta^{c}
$$

- Taking dimensions

$$
M L T^{-2}=\left(L T^{-1}\right)^{a} L^{b}\left(M L^{-1} T^{-1}\right)^{c}=M c L^{(a+b-c)} T^{-(a+c)}
$$

- Comparing dimensions of M,

$$
C=1
$$

- Comparing dimensions of T ,

$$
-(a+c)=-2 \quad a+1=2 \quad a=1
$$

- Comparing dimensions of L ,
- $(a+b-c)=1$

$$
b=1-a+c=1-1+1=1 \quad b=1
$$

$$
F=K v r \eta
$$

$\mathrm{K}=6 \pi$

$$
F=6 \pi v r \eta
$$

Derivation of Stoke's Equation

- When a body falls through a liquid,
ρ - Density of the body $\sigma-$ D.ensity of the medium

Weight of the body $=M g=\frac{4}{3} \pi r^{3} \rho g$ (Downward)
Upward thrust on the body by the medium = Weight of the liquid displaced

$$
=\frac{4}{3} \pi r^{3} \sigma g
$$

Resultant downward force $=\frac{4}{3} \pi r^{3} \rho g-\frac{4}{3} \pi r^{3} \sigma g=\frac{4}{3} \pi r^{3}(\rho-\sigma) g$

Derivation of Stoke's Equation

- When terminal velocity is attained,

$$
\begin{gathered}
6 \pi \eta r v=\frac{4}{3} \pi r^{3}(\rho-\sigma) g \\
\eta=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{v}
\end{gathered}
$$

Terminal Velocity, $v=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$

$$
v \propto r^{2}, \quad v \propto(\rho-\sigma) \quad v \propto \frac{1}{\eta}
$$

Application of Stoke's law

$$
6 \pi \eta r v=\frac{4}{3} \pi r^{3}(\rho-\sigma) g
$$

- To determine coefficient of viscosity of liquids
- To determine radius of small spherical objects like rain drops
- To determine electronic charge in Millikan's oil drop method

Application of Stoke's law Examples

- Formation of cloud of tiny drops of water
- Tiny drops of water - small radius -0.001 cm

$$
v \propto r^{2}
$$

- small Terminal velocity $\approx 1.2 \mathrm{~cm} / \mathrm{s}$
- They remain suspended in air
- Appear to be floating

Application of Stoke's law Examples

- Rain drops
- Bigger drops of water - big radius $-0.01 \mathrm{~cm} \quad v \propto r^{2}$
- big Terminal velocity $\approx 120 \mathrm{~cm} / \mathrm{s}$
- They fall through air

Application of Stoke's law Examples

- If $\rho>\sigma$, Terminal velocity $=$ positive

The body will move downward

- If $\rho<\sigma$, Terminal velocity $=$ negative

The body will move upward
Eg: Air bubbles formed in water

$$
6 \pi \eta r v=\frac{4}{3} \pi r^{3}(\rho-\sigma) g
$$

Terminal Velocity, $v=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$

- For a small bubble, $v \propto r^{2}$, terminal velocity small, small air bubbles will move up with small velocity
- When the size increases, $v \propto r^{2}$, Terminal velocity increases

Determination of coefficient of viscosity-
 Stoke's falling viscometer

- The liquid whose η to be determined is taken in a jar
- Put two marks, A \& B on the jar
- Tiny sphere of known radius is dropped centrally
- A stopwatch is started when the sphere A just crosses A
- It is stopped just it cross B
- Distance $A B=S$, Time taken to cross $A B=t$

B \quad Terminal Velocity, $v=\frac{s}{t}$

$$
\eta=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{v}=\frac{2}{9} \frac{r^{2} t(\rho-\sigma) g}{S}
$$

Determination of coefficient of viscosityStoke's falling viscometer

- The experiment is repeated for spheres of different radii
- Time is noted in all cases
- A graph is plotted between r^{2} and $1 / t$
- It will be a straight line
- Slope $=\frac{d y}{d x}=\frac{r^{2}}{1 / t}=r^{2} t$
- $r^{2} \mathrm{t}$ is constant

Determination of coefficient of viscosityStoke's falling viscometer

- η for different temperatures can be found out
- A sensitive thermometer is used to measure the temperature of the liquid

B

Brownian Motion

- Brownian motion is the seemingly random movement of particles suspended in a fluid.
- It is the clearest proof of molecular agitation.
- It was first noticed by ROBERT BROWN in 1827
- Albert Einstein and Marian Smoluchowski predicted a solution for this
- Einstein's predictions were verified by Perrin and was awarded the Nobel prize for Physics

- According to Einstein,
- The colloidal particle is struck by several molecules of dispersion medium
- The movement is caused by unequal number of molecules of medium striking from opposite direction.
- When more molecules strike the particle from one side than other direction of movement changes.
- Avg. Translational K.E= Avg K.E

$$
1 / 2 M \vec{V}^{2}=1 / 2 m \vec{v}^{2}=3 / 2 k_{B} T
$$

M=Mass of colloidal particle
$\mathrm{V}=$ Velocity of colloidal particle
$\mathrm{m}=$ mass of molecules of medium at absolute temp. T $\mathrm{v}=\mathrm{velocity}$ of molecules of medium at absolute temp. T
$k_{B}=$ Boltzmann's constant

- The Boltzmann's constant k_{B} is given by

$$
k_{B}=\frac{R}{N_{A}}
$$

- According to kinetic theory,
the mean Brownian displacement, \bar{x} of a particle from its original position along a given axis after t seconds is,

$$
\bar{x}=\left(\frac{R T t}{3 \eta \pi r N_{A}}\right)^{\frac{1}{2}}
$$

$r=$ radius of particle
$\mathrm{T}=$ absolute temp.
$\eta=$ coefficient of viscosity

Viscosity of gases

V Viscosity of gases arises from the molecular diffusion that transports momentum between layers of flow.

- The kinetic theory of gases allows accurate prediction of the behaviour of gaseous viscosity.
- Viscosity is independent of pressure.
- It increases as temperature increases.

Meyer's formula

- Consider a gas flowing through a tube
- Let
- $\mathrm{V}=$ volume of the gas flowing per second
- $X=$ distance from the inlet end of the tube
- $\rho=$ density of the gas
- $\mathrm{P}=$ uniform pressure
- During the flow
- density and volume of gas flowing through any section change
- Mass of the gas flowing through any section taken to be constant

$$
\begin{array}{ll}
\rho V=\text { constant } & \rho \propto P \\
P V=\text { constant } &
\end{array}
$$

- Consider
- dx - A section of the tube
- At a distance X from the inlet end
- With a pressure difference dP
- Poiseuille's formula

$$
V=\frac{\pi P r^{4}}{8 \eta l}
$$

- Substituting for $l=d x$

$$
\begin{aligned}
& \mathrm{P}=\mathrm{dP} \\
& \qquad V=\frac{\pi r^{4}}{8 \eta} \frac{d P}{d x}
\end{aligned}
$$

- As x increases P decreases,

$$
V=-\frac{\pi r^{4}}{8 \eta} \frac{d P}{d x}
$$

> $P V=$ constant $=K$

$$
V=-\frac{\pi r^{4}}{8 \eta} \frac{d P}{d x}
$$

| $-\frac{\pi P r^{4}}{8 \eta} d P=K d x$

$$
-\frac{\pi r^{4}}{8 \eta} \mathrm{PdP}=K \mathrm{dx}
$$

$>-\frac{\pi r^{4}}{8 \eta} \int_{P_{1}}^{P_{2}} \mathrm{PdP}=K \int_{0}^{l} \mathrm{dx}$
P_{1}-Pressure at the inlet of the tube P_{2} - Pressure at the outlet of the tube

- Integrating

$$
\begin{gathered}
-\frac{\pi r^{4}}{16 \eta}\left(P_{2}{ }^{2}-P_{1}{ }^{2}\right)=K l \quad \frac{\pi r^{4}}{16 \eta}\left(P_{1}{ }^{2}-P_{2}{ }^{2}\right)=K l \\
K=\frac{\pi r^{4}}{16 \eta l}\left(P_{1}^{2}-P_{2}{ }^{2}\right)
\end{gathered}
$$

- $P V=$ constant $=K=P_{1} V_{1}=P_{2} V_{2}$

$$
P_{1} V_{1}=P_{2} V_{2}=\frac{\pi r^{4}}{16 \eta l}\left(P_{1}^{2}-P_{2}^{2}\right)
$$

This is Meyer's formula for gaseous flow through a capillary tube

Effect of pressure on the viscosity of gases

- James Clerk Maxwell published a paper in 1866 explained gaseous viscosity using the kinetic theory of gases
- The viscosity coefficient ∞ density (pressure), ∞ mean free path ∞ mean velocity of atoms
- mean free path $\infty \frac{1}{\text { density (pressure) }}$
- So increase of pressure doesn't change viscosity
- But at high pressures, Viscosity of gases increases with pressure

Effect of temperature on the viscosity of gase

- The viscosity of gases increases with temperature
- Sutherland's formula can be used to derive the viscosity of an ideal gas as a function of the temperature

$$
\eta=\eta_{0}\left(\frac{T_{0}+C}{T+C}\right)\left(\frac{T}{T_{0}}\right)^{3 / 2}
$$

$\eta=$ Viscosity in (Pa.s) at input temperature T

$$
\eta_{0}=\text { Reference Viscosity in (Pa.s) at reference temperature } T_{0}
$$

- This equation is valid for temperatures between $0<T<555 \mathrm{~K}$

Thank You

