THERMODYNAMICS

Dr. Litty Mathew Irimpan Assistant Professor in Physics St. Mary's College, Thrissur

THERMODYNAMICS

- Thermodynamics is the study of heat energy and its transformation.
- Thermodynamics is based on four laws , namely, the zeroth law , first law , second law and third law of thermodynamics

Thermodynamic System

- A finite portion of matter or a restricted region of space ,which is set aside on which our attention is focused is called a thermodynamic system.
- Eg : Air enclosed in a steel tank.

SURROUNDINGS, BOUNDARY AND UNIVERSE

- Surroundings : Everything outside the system which has a direct bearing on the behavior of the system.
- Boundary :The separation between the system and surrounding is called the of the system.
 - The boundary may be real or imaginary.
- Universe : A finite portion of the world consisting of the system and those surroundings
 - It has no cosmic or celestial implications.

THERMODYNAMIC CO-ORDINATES

• The thermodynamic system is specified by the thermodynamic co-ordinates

- Pressure
- •Volume
- •Temperature
- •Entropy

HYDROSTATIC SYSTEMS

• A hydrostatic system is any isotropic system

- of constant mass and constant composition
- that exerts a uniform hydrostatic pressure on the surroundings
- in the absence of gravitational, electric or magnetic effects
- These systems are divided into the following categories.
 - A pure substance:
 - A single chemical compound in the pure form of solid, liquid, a gas
 - A mixture of any two or all the three
 - A homogenous mixture of different compounds:
 - Mixture of
 - inert gases
 - chemically active gases
 - liquids or solution
 - A heterogeneous mixture:
 - mixture of different gases with a mixture of different liquids

HYDROSTATIC SYSTEMS

- For hydrostatic system,
 - Volume expansivity,

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$$

• Isothermal Bulk modulus of elasticity

$$B = -V\left(\frac{\partial P}{\partial V}\right)_T$$

• Isothermal compressibility,

$$K = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$

THERMODYNAMIC EQUILIBRIUM

• Mechanical Equilibrium

If there are no unbalanced forces acting on any part of the system or on the system as a whole

Thermal Equilibrium

If there are no temperature differences

betweenthedifferent parts ofthe systembetweenthesystemandthesurroundings

Chemical Equilibrium

all the 3 equilibria

If the system satisfies

If there are no chemical

reactions within the system and no motion of any chemical

constituent from one part of the system to another part

QUASI STATIC PROCESS

• If the unbalanced force acting on the system is infinitesimally small such that

- The system is at all times near to a state of thermodynamic equilibrium
- All states through which the system passes can be defined by thermodynamic variables

Then that process is quasi static process

ZEROTH LAW OF THERMODYNAMICS

- Two systems in thermal equilibrium with a third system, all 3 systems are in equilibrium with each other
- A in equilibrium with C B in equilibrium with CThen
- A in equilibrium with B

St. Mary's College, Thrissur

THERMODYNAMIC PROCESSES

- Thermodynamic state of a system is defined by thermodynamic co-ordinates
- Any change in thermodynamic co-ordinates of the thermodynamic system causes change in the state of a system.
- Such process is Thermodynamic Process
 - Isothermal Process
 - Adiabatic
 - Isochoric
 - Isobaric

ISOTHERMAL PROCESS

- A process in which temperature remains constant
- Pressure and volume changes
- It is a slow process
- Graph between P & V –Isotherm
- Since internal energy depends only on temp, Internal energy of perfect gas remains constant in an isothermal process

ISOTHERMAL PROCESS

- First law of thermodynamics, dQ = dU + PdV dU = 0, dQ = PdV Heat is completely converted to external work
- Ideal gas equation is PV=nRT
 Eqn of isothermal process PV=constant
- dQ = Heat change dU = internal energy change PdV= work done P = Pressure V = Volume n = no: of moles R = Universal gas constant
- T = Temperature

ISOTHERMAL PROCESS

ADIABATIC PROCESS

- The system is isolated from the surroundings
- In a reversible adiabatic process-Entropy is constant
- Pressure, Volume, Temperature may change
- It is a quick and sudden process

ADIABATIC PROCESS

• First law of thermodynamics, dQ = dU + PdV

 $dQ = 0, \qquad dU = -PdV$

• Eqn of Adiabatic process PV^{γ} =constant

- dQ = Heat change dU = internal energy change PdV= work done
- P = Pressure
- V = Volume
- n = no: of moles
- R = Universal gas constant
- T = Temperature

• Adiabatic Process, • Isothermal Process, $PV^{\gamma} = \text{constant} = K$ *PV*=constant=K $P = KV^{-\gamma}$ $P = KV^{-1}$ Slope of the adiabatic Slope of the isothermal $\left(\frac{\partial P}{\partial V}\right)_{S} = -\gamma K V^{-\gamma - 1} = -\gamma K V^{-\gamma} V^{-1}$ $\left(\frac{\partial P}{\partial V}\right)_T = -KV^{-1-1} = -KV^{-1}V^{-1}$ $= -\gamma P V^{-1} = -\gamma \frac{P}{V}$ $= -PV^{-1} = -\frac{P}{V}$ Since $\gamma > 1$, Slope of adiabatic curve > slope of isotherm

ADIABATIC PROCESS

ISOBARIC PROCESS

- Process at constant Pressure
- Equation of Isobaric Process

$$\frac{V}{T} = Constant$$
 $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

- First law of thermodynamics, dQ = dU + PdV
 - Heat supplied is utilized for
 - Increase in Internal energy
 - Do external work

ISOBARIC PROCESS

ISOCHORIC PROCESS

- Process at constant Volume
- Equation of Isochoric Process

$$\frac{P}{T} = Constant$$
 $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

• First law of thermodynamics, dQ = dU + PdV

 $dV = 0, \qquad dQ = dU$

Heat supplied is utilized for
Increase in Internal energy

ISOCHORIC PROCESS

INDICATOR DIAGRAM

- Graph between thermodynamic variables for different thermodynamic process
 - P-V Diagram
 - P-T Diagram
 - V-T Diagram
 - T-S Diagram

P-V DIAGRAM

Work done=Area enclosed by PV diagram

V-T DIAGRAM

P-T DIAGRAM (PHASE DIAGRAM)

Т

P-T DIAGRAM (PHASE DIAGRAM)

Triple Point: A point at which three phases of a substance co-exist

CYCLIC PROCESS

- If the system brought back to initial state after performing series of processes
- Work done=Area enclosed by PV diagram

REVERSIBLE PROCESS

- The process in which system and surroundings brought back to the initial state at the end without producing any change in the universe
- The process is performed quasi statically
- System is always pass through states of thermodynamic equilibrium
- Process is not accompanied by any dissipative effects
 - Friction
 - Viscosity
 - Inelasticity
 - Electric resistance
 - Magnetic hysteresis
- Since it is impossible to satisfy all the conditions,
 - Reversible process-ideal

IRREVERSIBLE PROCESS

- Process does not fulfill the conditions of reversible process
- Thermodynamic equilibrium is not satisfied
- Process is accompanied by dissipative effects
 - Friction
 - Viscosity
 - Inelasticity
 - Electric resistance
 - Magnetic hysteresis
- All natural process are irreversible since dissipation of energy is present

WORK DONE BY A HYDROSTATIC SYSTEM

Cylinder with movable Piston

At equilibrium, F = -PAWork done, dW = Fdx = -PAdx = -PdV

Total Work done= $W = -\int_{V_i}^{V_f} P dV$

F=Applied Force P=Pressure A=Area V_i=Initial Volume V_f=Final Volume

1. ISOTHERMAL PROCESS

• For an Ideal gas, PV=nRT, $P = \frac{nRT}{V}$

• Work done, $W = -\int_{V_i}^{V_f} P dV$

$$= -\int_{V_i}^{V_f} \frac{nRT}{V} dV$$
$$= -nRT \int_{V_i}^{V_f} \frac{dV}{V}$$
$$= -nRT [\ln V] \frac{V_f}{V_i} = -nRT \ln\left(\frac{V_f}{V_i}\right)$$

Isothermal work = $nRT \ln\left(\frac{V_i}{V_f}\right)$

ADIABATIC PROCESS

• For an Adiabatic Process, PV^{γ} =constant=K $P = KV^{-\gamma}$ • Work done, $W = -\int_{V_i}^{V_f} P dV = -\int_{V_i}^{V_f} K V^{-\gamma} dV$ $= -K \left(\frac{V^{-\gamma+1}}{-\gamma+1} \right)_{V_i}^{V_f} = \frac{K}{\gamma-1} \left(V_f^{-\gamma+1} - V_i^{-\gamma+1} \right)$ $= \frac{1}{\nu - 1} \left(K V_f^{-\gamma} V_f - K V_i^{-\gamma} V_i \right)$ Adiabatic Work= $\frac{1}{\nu-1} (P_f V_f - P_i V_i)$ For an Ideal gas, PV=nRT Adiabatic Work= $\frac{nR}{\nu-1}(T_f - T_i)$

ISOCHORIC PROCESS

• Volume Constant, dV=0

• Work done,
$$W = -\int_{V_i}^{V_f} P dV = 0$$

Isochoric Work=0

ISOBARIC PROCESS

Work done,
$$W = -\int_{V_i}^{V_f} P dV = -P \int_{V_i}^{V_f} dV$$

=-P($V_f - V_i$)
Isobaric Work=-P($V_f - V_i$)

For an Ideal gas, PV=nRT

Isobaric Work= $-nR(T_f - T_i)$

FIRST LAW OF THERMODYNAMICS

• In a thermodynamic process involving a closed system, the increment in the internal energy is equal to the difference between the heat accumulated by the system and the work done by it.

$$dU = dQ - PdV$$

$$dQ = dU + PdV$$

• It is the *law* of conservation of energy, adapted for *thermodynamic* systems

FIRST LAW OF THERMODYNAMICS dQ = dU + PdV

• Isothermal Process –T constant

dT = 0 dU = 0, dQ = PdVHeat is completely converted to external work

• Adiabatic Process –no heat exchange $dQ = 0, \quad dU = -PdV$ Internal energy change is converted to external work

Isobaric Process-dQ = dU + PdVHeat supplied is utilized for Increase in Internal energy Do external work

Isochoric Process

Heat supplied is utilized for Increase in Internal energy

dV = 0, dQ = dU

APPLICATION OF FIRST LAW –HEAT CAPACITIES MEYER'S EQUATION

For a hydrostatic system, dQ = dU + PdV
U is a function of (P, V, T)

• Choosing T&V

$$dU(T,V) = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

• First law becomes

$$dQ = dU + PdV = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV + PdV$$
$$= \left(\frac{\partial U}{\partial T}\right)_V dT + \left[\left(\frac{\partial U}{\partial V}\right)_T + P\right] dV$$

• Dividing throughout by dT

$$\frac{dQ}{dT} = \left(\frac{\partial U}{\partial T}\right)_V + \left[\left(\frac{\partial U}{\partial V}\right)_T + P \right] \frac{dV}{dT}$$

$$\frac{dQ}{dT} = \left(\frac{\partial U}{\partial T}\right)_V + \left[\left(\frac{\partial U}{\partial V}\right)_T + P \right] \frac{dV}{dT}$$

<u>Case I</u>

V is constant, dV=0

$$\left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V$$

But

$$\left(\frac{\partial Q}{\partial T}\right)_V = C_v$$

$$C_{v} = \left(\frac{\partial Q}{\partial T}\right)_{V} = \left(\frac{\partial U}{\partial T}\right)_{V}$$

$$\frac{dQ}{dT} = \left(\frac{\partial U}{\partial T}\right)_V + \left[\left(\frac{\partial U}{\partial V}\right)_T + P \right] \frac{dV}{dT}$$

 $\underline{\text{Case } 2}$

P is constant

$$\left(\frac{\partial Q}{\partial T}\right)_{P} = \left(\frac{\partial U}{\partial T}\right)_{V} + \left[\left(\frac{\partial U}{\partial V}\right)_{T} + P \right] \left(\frac{\partial V}{\partial T}\right)_{P}$$

But

$$\left(\frac{\partial Q}{\partial T}\right)_P = C_p \qquad \qquad C_v = \left(\frac{\partial U}{\partial T}\right)_V$$

$$\begin{pmatrix} \frac{\partial Q}{\partial T} \end{pmatrix}_{P} = \begin{pmatrix} \frac{\partial U}{\partial T} \end{pmatrix}_{V} + \begin{bmatrix} \begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} + P \end{bmatrix} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}$$

$$C_{p} = C_{v} + \begin{bmatrix} \begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} + P \end{bmatrix} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}$$

$$C_{p} - C_{v} = \begin{bmatrix} \begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} + P \end{bmatrix} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}$$

- For one mole of gas, PV=RT
- Differentiating, PdV + VdP = RdT
- But P=constant, PdV = RdT $P\left(\frac{\partial V}{\partial T}\right)_P = R$

$$C_p - C_v = \left[\left(\frac{\partial U}{\partial V} \right)_T + P \right] \left(\frac{\partial V}{\partial T} \right)_P = \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P + R$$

In an isothermal Process, dT = 0, dU = 0, $\left(\frac{\partial U}{\partial V}\right)_T = 0$ $C_p - C_v = \left(\frac{\partial U}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P + R = R$

For Isothermal isobaric process

$$C_p - C_v = R$$

HEAT ENGINE

- It is a machine that converts heat into mechanical work
- Essential requirements of heat engine
 - Source- High Temperature Reservoir
 - Working Substance-System
 - Sink-Low Temperature Reservoir

HEAT ENGINE

- Heat is absorbed from high temperature reservoir-|*Q_H*|
- Work is done by the system |*W*|
- Heat is rejected to the low temperature reservoir- $|Q_L|$

 $|Q_H| = |W| + |Q_L|$

HEAT ENGINE – EFFICIENCY

• Efficiency=
$$\eta = \frac{Output}{Input} = \frac{Work \ Done}{Heat \ absorbed} = \frac{|W|}{|Q_H|}$$

 $|Q_H| = |W| + |Q_L|, \qquad |W| = |Q_H| - |Q_L|$

$$\eta = \frac{|W|}{|Q_H|} = \frac{|Q_H| - |Q_L|}{|Q_H|} = 1 - \frac{|Q_L|}{|Q_H|}$$

When $|Q_L| = 0$ $\eta = 1 = 100\%$ But in real case, $|Q_L| \neq 0$ $\eta < 100\%$ Efficiency of an engine always less than 100%

SECOND LAW OF THERMODYNAMICS KELVIN-PLANCK STATEMENT

- Based on heat engine
- For heat engine, $|Q_H| = |W| + |Q_L|$
- No process when $|Q_L| = 0$, $|Q_H| = |W|$
- No process is possible whose sole result is the absorption of heat from a reservoir and the conversion of this heat into work

REFRIGERATOR

- Heat is absorbed from LOW temperature reservoir- $|Q_L|$
- Work is done ON the system |W|
- Heat is rejected to the HIGH temperature reservoir- $|Q_H|$

 $|Q_L| + |W| = |Q_H|$

Refrigerator-Co-efficient of Performance

Co-efficient of Performance $=\omega = \frac{Cooling}{Input power} = \frac{|Q_L|}{|W|}$

 $|Q_L| + |W| = |Q_H|, \quad |Q_L| = |Q_H| - |W|$

$$\omega = \frac{|Q_L|}{|W|} = \frac{|Q_H| - |W|}{|W|}$$

SECOND LAW OF THERMODYNAMICS CLAUSIUS STATEMENT

- Based on refrigerator
- For Refrigerator, $|Q_L| + |W| = |Q_H|$
- No process when |W| = 0, $|Q_L| = |Q_H|$
- No process is possible whose sole result is the transfer of heat from a cooler to a hotter body

EQUIVALENCE OF KELVIN-PLANCK & CLAUSIUS STATEMENTS

- K=Truth of Kelvin-Planck statement
- -K=Falsity of Kelvin-Planck statement
- C=Truth of Clausius Statement
- -C=Falsity of Clausius Statement

To Prove -C implies -K

Consider

- –C-Refrigerator requires no work
- +K-Heat engine
- Self acting machine-
- Heat exchange in
- High temperature reservoir= $|Q_H| |Q_L|$
- Low Temperature Reservoir 0
- Work done-|W|
- For self acting machine- $|Q_H|$ - $|Q_L|$ heat is taken from high temperature reservoir and fully converted to work without any change in low temperature reservoir=-K

TO PROVE -K IMPLIES -C

Consider

- –K=Heat engine which converts full heat into work
- +C=Refrigerator
- Self acting machine-
- Heat exchange in
- High temperature reservoir= $|Q_H|$ - $|Q_H| - |Q_L| = -|Q_L|$
- Low Temperature Reservoir $|Q_L|$
- Work done-|W|-|W|=0
- For self acting machine- $|Q_L|$ heat is transferred from low temperature reservoir to high temperature reservoir without any external work=-C

- Cylinder placed on non-conducting stand
- Initially $1(P_1, V_1, T_L)$
- Reversible adiabatic compression is performed
 - Volume decreases,
 - Pressure increases
 - Temperature increases
- $\circ 2 (P_2, V_2, T_H)$

V

Adiabatic Compression (1-2) Adiabatic Work = $W_1 = \frac{nR}{\gamma - 1} (T_f - T_i)$ $= \frac{R}{\gamma - 1} (T_H - T_L)$

Compression-Work is done on the gasnegative

$$W_1 = -\frac{R}{\gamma - 1} \left(T_H - T_L \right)$$

- Cylinder placed on high temperature reservoir
- $2(P_2, V_2, T_H)$
- Reversible Isothermal expansion is performed
 - Volume Increases,
 - Pressure decreases,
 - Temperature constant
- **o** 3 (P_3, V_3, T_H)

p

Isothermal Expansion (2-3) Isothermal Work= $W_2 = nRT \ln \left(\frac{V_i}{V_f}\right)$

$$= RT_H \ln\left(\frac{V_2}{V_3}\right) = -RT_H \ln\left(\frac{V_3}{V_2}\right)$$

Expansion-Work is done by the gas-positive

 $W_2 = RT_H \ln\left(\frac{V_3}{V_2}\right)$

p

- Cylinder placed on non-conducting stand
- **o** 3 (P_3, V_3, T_H)
- Reversible Adiabatic expansion is performed
 - Volume Increases,
 - Pressure decreases,
 - Temperature decreases
- 4 (P_4, V_4, T_L)

Adiabatic Expansion (3-4)

Adiabatic Work= $W_3 = \frac{nR}{\gamma - 1} (T_f - T_i)$

$$=\frac{R}{\gamma-1}(T_L - T_H) = -\frac{R}{\gamma-1}(T_H - T_L)$$

Expansion-Work is done by the gas-positive

$$W_3 = \frac{R}{\gamma - 1} \left(T_H - T_L \right)$$

- Cylinder placed on low temperature reservoir
- \circ 4 (*P*₄, *V*₄, *T*_L)
- Reversible Isothermal compression is performed
 - Volume decreases,
 - Pressure increases,
 - Temperature constant
- $1(P_1, V_1, T_L)$

Isothermal Compression (4-1) Isothermal Work= $W_4 = nRT \ln \left(\frac{V_i}{V_f}\right)$

$$= RT_L \ln\left(\frac{V_4}{V_1}\right)$$

Compression-Work is done on the gas-negative

$$W_4 = -RT_L \ln\left(\frac{V_4}{V_1}\right)$$

EFFICIENCY

• Net work done, $W = W_1 + W_2 + W_3 + W_4$

$$W = -\frac{R}{\gamma - 1} (T_H - T_L) + RT_H \ln\left(\frac{V_3}{V_2}\right) + \frac{R}{\gamma - 1} (T_H - T_L) + -RT_L \ln\left(\frac{V_4}{V_1}\right)$$
$$W = RT_H \ln\left(\frac{V_3}{V_2}\right) - RT_L \ln\left(\frac{V_4}{V_1}\right)$$

Adiabatic Process

(1-2),
$$T_L V_1^{\gamma - 1} = T_H V_2^{\gamma - 1}$$

(3-4) $T_L V_4^{\gamma - 1} = T_H V_3^{\gamma - 1}$

Dividing

$$\frac{V_4}{V_1} = \frac{V_3}{V_2}$$

$$W_{1} = -\frac{R}{\gamma - 1} (T_{H} - T_{L})$$
$$W_{2} = RT_{H} ln \left(\frac{V_{3}}{V_{2}}\right)$$
$$W_{3} = \frac{R}{\gamma - 1} (T_{H} - T_{L})$$
$$W_{4} = -RT_{L} ln \left(\frac{V_{4}}{V_{1}}\right)$$

- Efficiency of heat engine, $\eta = \frac{|W|}{|Q_H|} = \frac{W}{W_2}$
- Since system is in contact with High temperature reservoir during Isothermal expansion (2-3), $|Q_H| = W_2$

$$\eta = \frac{RT_H \ln\left(\frac{V_3}{V_2}\right) - RT_L \ln\left(\frac{V_4}{V_1}\right)}{RT_H \ln\left(\frac{V_3}{V_2}\right)}$$

$$\eta = \frac{RT_H \ln\left(\frac{V_3}{V_2}\right) - RT_L \ln\left(\frac{V_3}{V_2}\right)}{RT_H \ln\left(\frac{V_3}{V_2}\right)} = \frac{T_H - T_L}{T_H} = 1 - \frac{T_L}{T_H}$$

CARNOT'S REFRIGERATOR

- Carnot cycle for engine performed in opposite direction-refrigeration cycle
- Co-efficient of Performance,

$$\omega = \frac{Cooling}{Input \ power} = \frac{|Q_L|}{|W|}$$

• Since system is in contact with Low temperature reservoir during Isothermal compression $(4-1), |Q_L| = W_4$

$$\omega = \frac{W_4}{|W|} = \frac{RT_L \ln\left(\frac{V_4}{V_1}\right)}{RT_H \ln\left(\frac{V_3}{V_2}\right) - RT_L \ln\left(\frac{V_4}{V_1}\right)}$$
$$= \frac{RT_L \ln\left(\frac{V_4}{V_1}\right)}{RT_H \ln\left(\frac{V_4}{V_1}\right) - RT_L \ln\left(\frac{V_4}{V_1}\right)}$$
$$\omega = \frac{T_L}{T_H - T_L} = \frac{|Q_L|}{|Q_H| - |Q_L|}$$

CARNOT'S THEOREM AND COROLLARY

• No heat engine operating between two given reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs

• Imagine

- A Carnot engine-R
- Irreversible engine-I

• Let us assume $\eta_I > \eta_R$

$$\frac{|W|}{|Q'_H|} > \frac{|W|}{|Q_H|}$$

 $|Q_H| > |Q'_H|$

 $|Q_H| - |Q'_H|$ is positive

- Let I drive R back ward as refrigerator
 - I-Engine
 - R-Refrigerator
- I&R-Self acting machine

Carnot Refrigerator-R	Irreversible engine-I	
Absorbs heat $ Q_H - W $ from Low Temperature Reservoir	Absorbs heat $ Q'_H $ from High Temperature Reservoir	
Work $ W $ is done on the system	Performs work W	
Rejects heat $ Q_H $ to High Temperature Reservoir	Rejects heat $ Q'_L = Q'_H - W $ to Low Temperature Reservoir	

- Self acting machine $\operatorname{transfer}|Q_H| - |Q'_H|$ heat from Low to high temperature reservoir without work
- Violates second law of thermodynamics
- So original assumption
 - $\eta_I > \eta_R$ is false

• $\eta_I \leq \eta_R$

COROLLARY

- All Carnot engines operating between the same two reservoirs have the same efficiency
- Consider 2 Carnot engines $R_1 \& R_2$

<u>Case I</u>

- Let R_1 drive R_2 back ward as refrigerator
 - R₁-Engine
 - R₂-Refrigerator

 $\circ R_1 \& R_2$ -Self acting machine

• From Carnot's Theorem, $\eta_{\mathrm{R}_1} \leq \eta_{\mathrm{R}_2}$

Carnot's Theorem I-Engine R-Refrigerator $\eta_I \leq \eta_R$

<u>Case II</u>

- Let R₂ drive R₁ back ward as refrigerator
 - R_2 -Engine
 - R₁-Refrigerator

 $\circ R_1 \& R_2$ -Self acting machine

• From Carnot's Theorem, $\eta_{R_2} \leq \eta_{R_1}$

Carnot's Theorem I-Engine R-Refrigerator $\eta_I \leq \eta_R$

- Case I, $\eta_{R_1} \leq \eta_{R_2}$ • Case II, $\eta_{R_2} \leq \eta_{R_1}$ • To satisfy both cases, only possibility is equality $\eta_{R_1} = \eta_{R_2}$
- Why maximum efficiency for Carnot Engine?
- Efficiency of Carnot engine is independent of working substance
- The temperature of reservoirs remains same
- This is not practical case and that is why the efficiency of practical engines is less than theoretical Carnot engine

