THERMODYNAMICS

Dr. Litty Mathew Irimpan
Assistant Professor in Physics
St. Mary's College, Thrissur

THERMODYNAMICS

- Thermodynamics is the study of heat energy and its transformation.
- Thermodynamics is based on four laws , namely, the zeroth law, first law, second law and third law of thermodynamics

Thermodynamic System

- A finite portion of matter or a restricted region of space, which is set aside on which our attention is focused is called a thermodynamic system.
Eg : Air enclosed in a steel tank.

Surroundings, boundary and universe

- Surroundings :Everything outside the system which has a direct bearing on the behavior of the system.
- Boundary :The separation between the system and surrounding is called the of the system.
- The boundary may be real or imaginary.
- Universe :A finite portion of the world consisting of the system and those surroundings
- It has no cosmic or celestial implications.

Thermodynamic Co-ORDINATES

- The thermodynamic system is specified by the thermodynamic co-ordinates
- Pressure
- Volume
-Temperature
- Entropy

Hydrostatic systems

- A hydrostatic system is any isotropic system
- of constant mass and constant composition
- that exerts a uniform hydrostatic pressure on the surroundings
- in the absence of gravitational, electric or magnetic effects
- These systems are divided into the following categories.
- A pure substance:
- A single chemical compound in the pure form of solid, liquid, a gas
- A mixture of any two or all the three
- A homogenous mixture of different compounds:
- Mixture of
- inert gases
- chemically active gases
- liquids or solution
- A heterogeneous mixture:
- mixture of different gases with a mixture of different liquids

Hydrostatic systems

- For hydrostatic system,
- Volume expansivity,

$$
\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

- Isothermal Bulk modulus of elasticity

$$
B=-V\left(\frac{\partial P}{\partial V}\right)_{T}
$$

- Isothermal compressibility,

$$
K=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

Thermodynamic Equilibrium

If the system satisfies

- Mechanical Equilibrium

If there are no unbalanced forces acting on any part of the system or on the system as a whole

- Thermal Equilibrium
If there are no
temperature differences between the different parts of the system or between the system and the surroundings
- Chêmical Equilibrium
If there are no chemical
reactions within the system and no motion of any chemical constituent from one part of the system to another part

Quasi Static Process

- If the unbalanced force acting on the system is infinitesimally small such that
- The system is at all times near to a state of thermodynamic equilibrium
- All states through which the system passes can be defined by thermodynamic variables

Then that process is quasi static process

Zeroth Law of Thermodynamics

- Two systems in thermal equilibrium with a third system, all 3 systems are in equilibrium with each other
- A in equilibrium with C
- B in equilibrium with C Then
- A in equilibrium with B

Thermodynamic Processes

- Thermodynamic state of a system is defined by thermodynamic co-ordinates
- Any change in thermodynamic co-ordinates of the thermodynamic system causes change in the state of a system.
- Such process is Thermodynamic Process
- Isothermal Process
- Adiabatic
- Isochoric
- Isobaric

Isothermal Process

- A process in which temperature remains constant
- Pressure and volume changes
- It is a slow process
- Graph between P \& V -Isotherm
- Since internal energy depends only on temp, Internal energy of perfect gas remains constant in an isothermal process

Isothermal Process

- First law of thermodynamics, $d Q=d U+P d V$

$$
d U=0, \quad d Q=P d V
$$

Heat is completely converted to external work

- Ideal gas equation is $\mathrm{PV}=\mathrm{nRT}$
- Eqn of isothermal process $\mathrm{PV}=$ constant
$d Q=$ Heat change
$d U=$ internal energy change
$P d V=$ work done
$\mathrm{P}=$ Pressure
$\mathrm{V}=$ Volume
$\mathrm{n}=$ no: of moles
$\mathrm{R}=$ Universal gas constant
T = Temperature

Isothermal Process

- P-T Diagram

- T-S Diagram

Adiabatic Process

- The system is isolated from the surroundings
- In a reversible adiabatic process-Entropy is constant
- Pressure, Volume, Temperature may change
- It is a quick and sudden process

Adiabatic Process

- First law of thermodynamics, $d Q=d U+P d V$

$$
d Q=0, \quad d U=-P d V
$$

- Eqn of Adiabatic process
$P V^{\gamma}=$ constant
- Adiabatic Process,

$$
\begin{aligned}
& P V^{\gamma}=\text { constant }=\mathrm{K} \\
& P=K V^{-\gamma}
\end{aligned}
$$

Slope of the adiabatic

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=-\gamma K V^{-\gamma-1}=-\gamma K V^{-\gamma} V^{-1}
$$

$$
=-\gamma P V^{-1}=-\gamma \frac{P}{V}
$$

- Isothermal Process, $P V=$ constant $=\mathrm{K}$

$$
P=K V^{-1}
$$

Slope of the isothermal

$$
\left(\frac{\partial P}{\partial V}\right)_{T}=-K V^{-1-1}=-K V^{-1} V^{-1}
$$

$$
=-P V^{-1}=-\frac{P}{V}
$$

Since $\gamma>1$, Slope of adiabatic curve $>$ slope of isotherm

Adiabatic Process

- P-T Diagram

Projection adiabatic in V-T plane
P-T plane
P-V plane

T

Isobaric Process

- Process at constant Pressure
- Equation of Isobaric Process

$$
\frac{V}{T}=\text { Constant } \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

- First law of thermodynamics, $d Q=d U+P d V$
- Heat supplied is utilized for
- Increase in Internal energy
- Do external work

Isobaric Process

- P-T Diagram

Isochoric Process

- Process at constant Volume
- Equation of Isochoric Process

$$
\frac{P}{T}=\text { Constant } \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

- First law of thermodynamics, $d Q=d U+P d V$

$$
d V=0, \quad d Q=d U
$$

- Heat supplied is utilized for
- Increase in Internal energy

Isochoric Process

- P-V Diagram

InDICATOR DIAGRAM

- Graph between thermodynamic variables for different thermodynamic process
- P-V Diagram
- P-T Diagram
- V-T Diagram
- T-S Diagram

P-V DIAGRAM

Work done=Area enclosed by PV diagram

V-T DIAGRAM

T-S DIAGRAM

P-T Diagram (Phase Diagram)

P-T Diagram (Phase Diagram)

Triple Point:
A point at which three phases of a substance co-exist

Cyclic Process

- If the system brought back to initial state after performing series of processes
- Work done=Area enclosed by PV diagram

Reversible Process

- The process in which system and surroundings brought back to the initial state at the end without producing any change in the universe
- The process is performed quasi statically
- System is always pass through states of thermodynamic equilibrium
- Process is not accompanied by any dissipative effects
- Friction
- Viscosity
- Inelasticity
- Electric resistance
- Magnetic hysteresis
- Since it is impossible to satisfy all the conditions,
- Reversible process-ideal

Irreversible Process

- Process does not fulfill the conditions of reversible process
- Thermodynamic equilibrium is not satisfied
- Process is accompanied by dissipative effects
- Friction
- Viscosity
- Inelasticity
- Electric resistance
- Magnetic hysteresis
- All natural process are irreversible since dissipation of energy is present

WORK DONE BY A HYDROSTATIC SYSTEM

Cylinder with movable Piston

At equilibrium, $\quad F=-P A$ Work done, $d W=F d x=-P A d x=-P d V$

Total Work done $=W=-\int_{V_{i}}^{V_{f}} P d V$

F=Applied Force
P=Pressure
A=Area
$V_{i}=$ Initial Volume
$V_{f}=$ Final Volume

1. Isothermal Process

- For an Ideal gas, $\mathrm{PV}=\mathrm{nRT}$,

$$
P=\frac{n R T}{V}
$$

- Work done, $\quad W=-\int_{V_{i}}^{V_{f}} P d V$

$$
\begin{aligned}
& =-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} d V \\
& =-n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V} \\
& =-n R T[\ln V]_{V_{i}}^{V_{f}}=-n R T \ln \left(\frac{V_{f}}{V_{i}}\right)
\end{aligned}
$$

Isothermal work $=n R T \ln \left(\frac{V_{i}}{V_{f}}\right)$

Adiabatic Process

- For an Adiabatic Process, $\quad P V^{\gamma}=$ constant $=\mathrm{K}$

$$
P=K V^{-\gamma}
$$

- Work done, $\quad W=-\int_{V_{i}}^{V_{f}} P d V=-\int_{V_{i}}^{V_{f}} K V^{-\gamma} d V$

$$
\begin{aligned}
& =-K\left(\frac{V^{-\gamma+1}}{-\gamma+1}\right)_{V_{i}}^{V_{f}}=\frac{K}{\gamma-1}\left(V_{f}^{-\gamma+1}-V_{i}^{-\gamma+1}\right) \\
& =\frac{1}{\gamma-1}\left(K V_{f}^{-\gamma} V_{f}-K V_{i}^{-\gamma} V_{i}\right)
\end{aligned}
$$

Adiabatic Work $=\frac{1}{\gamma-1}\left(P_{f} V_{f}-P_{i} V_{i}\right)$
For an Ideal gas, $\mathrm{PV}=\mathrm{nRT}$

$$
\text { Adiabatic Work }=\frac{n R}{\gamma-1}\left(T_{f}-T_{i}\right)
$$

Isochoric Process

- Volume Constant, $\mathrm{dV}=0$
- Work done, $\quad W=-\int_{V_{i}}^{V_{f}} P d V=0$

Isochoric Work=0

Isobaric Process

Work done, $\quad W=-\int_{V_{i}}^{V_{f}} P d V=-P \int_{V_{i}}^{V_{f}} d V$

$$
=-\mathrm{P}\left(V_{f}-V_{i}\right)
$$

Isobaric Work $=-\mathrm{P}\left(V_{f}-V_{i}\right)$

For an Ideal gas, $\mathrm{PV}=\mathrm{nRT}$

$$
\text { Isobaric Work=-nR }\left(T_{f}-T_{i}\right)
$$

First Law of Thermodynamics

- In a thermodynamic process involving a closed system, the increment in the internal energy is equal to the difference between the heat accumulated by the system and the work done by it.

$$
\begin{aligned}
& d U=d Q-P d V \\
& d Q=d U+P d V
\end{aligned}
$$

- It is the law of conservation of energy, adapted for thermodynamic systems

First Law of Thermodynamics

$$
d Q=d U+P d V
$$

- Isothermal Process -T constant

$$
d T=0 \quad d U=0, \quad d Q=P d V
$$

Heat is completely converted to external work

- Adiabatic Process -no heat exchange

$$
d Q=0, \quad d U=-P d V
$$

Internal energy change is converted to external work

Isobaric Process- $d Q=d U+P d V$ Heat supplied is utilized for

Increase in Internal energy Do external work

Isochoric Process

$$
d V=0, d Q=d U
$$

Heat supplied is utilized for
Increase in Internal energy

Application of First Law -Heat Capacities MEYER'S EQUATION

- For a hydrostatic system, $d Q=d U+P d V$
- U is a function of ($\mathrm{P}, \mathrm{V}, \mathrm{T}$)
- Choosing T\&V

$$
d U(T, V)=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

- First law becomes

$$
\begin{aligned}
d Q & =d U+P d V=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V+P d V \\
& =\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] d V
\end{aligned}
$$

- Dividing throughout by dT

$$
\frac{d Q}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] \frac{d V}{d T}
$$

$$
\frac{d Q}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] \frac{d V}{d T}
$$

Case I

V is constant, $\mathrm{dV}=0$

$$
\left(\frac{\partial Q}{\partial T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

But

$$
\left(\frac{\partial Q}{\partial T}\right)_{V}=C_{v}
$$

$$
C_{v}=\left(\frac{\partial Q}{\partial T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

$$
\frac{d Q}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] \frac{d V}{d T}
$$

Case 2
P is constant

$$
\left(\frac{\partial Q}{\partial T}\right)_{P}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P}
$$

But

$$
\begin{aligned}
\left(\frac{\partial Q}{\partial T}\right)_{P}=C_{p} & C_{v}=\left(\frac{\partial U}{\partial T}\right)_{V} \\
\left(\frac{\partial Q}{\partial T}\right)_{P} & =\left(\frac{\partial U}{\partial T}\right)_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P} \\
C_{p} & =C_{v}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P} \\
C_{p}-C_{v} & =\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P}
\end{aligned}
$$

- For one mole of gas, PV=RT
- Differentiating, $P d V+V d P=R d T$
- But $\mathrm{P}=$ constant, $\quad P d V=R d T$ $\mathrm{P}\left(\frac{\partial V}{\partial T}\right)_{P}=R$

$$
C_{p}-C_{v}=\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}+R
$$

In an isothermal Process, $d T=0, d U=0,\left(\frac{\partial U}{\partial V}\right)_{T}=0$

$$
C_{p}-C_{v}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}+R=R
$$

For Isothermal isobaric process

$$
C_{p}-C_{v}=R
$$

Heat Engine

- It is a machine that converts heat into mechanical work
- Essential requirements of heat engine
- Source- High Temperature Reservoir
- Working Substance-System
- Sink-Low Temperature Reservoir

Heat Engine

- Heat is absorbed from high temperature reservoir- $\left|Q_{H}\right|$
- Work is done by the system - $|W|$
- Heat is rejected to the low temperature reservoir- $\left|Q_{L}\right|$

$$
\left|Q_{H}\right|=|W|+\left|Q_{L}\right|
$$

Heat Engine -Efficiency

- Efficiency $=\eta=\frac{\text { output }}{\text { Input }}=\frac{\text { Work Done }}{\text { Heat absorbed }}=\frac{|W|}{\left|Q_{H}\right|}$

$$
\begin{aligned}
& \left|Q_{H}\right|=|W|+\left|Q_{L}\right|, \quad|W|=\left|Q_{H}\right|-\left|Q_{L}\right| \\
& \quad \eta=\frac{|W|}{\left|Q_{H}\right|}=\frac{\left|Q_{H}\right|-\left|Q_{L}\right|}{\left|Q_{H}\right|}=1-\frac{\left|Q_{L}\right|}{\left|Q_{H}\right|}
\end{aligned}
$$

When $\left|Q_{L}\right|=0$

$$
\eta=1=100 \%
$$

But in real case, $\left|Q_{L}\right| \neq 0$
$\eta<100 \%$
Efficiency of an engine always less than 100%

SEcond Law of Thermodynamics Kelvin-Planck Statement

- Based on heat engine
- For heat engine, $\left|Q_{H}\right|=|W|+\left|Q_{L}\right|$
- No process when $\left|Q_{L}\right|=0, \quad\left|Q_{H}\right|=|W|$
- No process is possible whose sole result is the absorption of heat from a reservoir and the conversion of this heat into work

REFRIGERATOR

- Heat is absorbed from LOW temperature reservoir- $\left|Q_{L}\right|$
- Work is done ON the system - $|W|$
- Heat is rejected to the HIGH temperature reservoir- $\left|Q_{H}\right|$

$$
\left|Q_{L}\right|+|W|=\left|Q_{H}\right|
$$

REFRIGERATOR-
 Co-Efficient of Performance

Co-efficient of Performance $=\omega=\frac{\text { Cooling }}{\text { Input power }}=\frac{\left|Q_{L}\right|}{|W|}$

$$
\left|Q_{L}\right|+|W|=\left|Q_{H}\right|, \quad\left|Q_{L}\right|=\left|Q_{H}\right|-|W|
$$

$$
\omega=\frac{\left|Q_{L}\right|}{|W|}=\frac{\left|Q_{H}\right|-|W|}{|W|}
$$

SEcond Law of Thermodynamics Clausius Statement

- Based on refrigerator
- For Refrigerator, $\left|Q_{L}\right|+|W|=\left|Q_{H}\right|$
- No process when $|W|=0, \quad\left|Q_{L}\right|=\left|Q_{H}\right|$
- No process is possible whose sole result is the transfer of heat from a cooler to a hotter body

Equivalence of Kelvin-Planck \& Clausius Statements

- K=Truth of Kelvin-Planck statement
- -K=Falsity of Kelvin-Planck statement
- C=Truth of Clausius Statement
- -C=Falsity of Clausius Statement

To Prove -C IMPLIEs -K

Consider

- -C-Refrigerator requires no work
- +K-Heat engine
- Self acting machine-
- Heat exchange in
- High temperature reservoir= $\left|Q_{H}\right|-\left|Q_{L}\right|$
- Low Temperature Reservoir - 0
- Work done-|W|
- For self acting machine- $\left|Q_{H}\right|-\left|Q_{L}\right|$ heat is taken from high temperature reservoir and fully converted to work without any change in low temperature reservoir=-K

To Prove -K implies -C

Consider

- -K=Heat engine which converts full heat into work
- +C=Refrigerator
- Self acting machine-
- Heat exchange in
- High temperature reservoir= $\left|Q_{H}\right|-$ $\left|Q_{H}\right|-\left|Q_{L}\right|=-\left|Q_{L}\right|$
- Low Temperature Reservoir - $\left|Q_{L}\right|$
- Work done- $|W|-|W|=0$
- For self acting machine- $\left|Q_{L}\right|$ heat is transfered from low temperature reservoir to high temperature reservoir without any external work=-C

Carnot's Reversible Engine

It consists of
Theoretical engine with maximum possible efficiency developed by Carnot

- It is operating in carnot

Cylinder with piston Working substance Non-conducting stand High temperature reservoir Low temperature reservoir

- Cylinder placed on non-conducting stand
- Initially $1\left(P_{1}, V_{1}, T_{L}\right)$
- Reversible adiabatic compression is performed
- Volume decreases,
- Pressure increases
- Temperature increases
- $2\left(P_{2}, V_{2}, T_{H}\right)$

Adiabatic Compression (1-2)
Adiabatic Work $=W_{1}=\frac{n R}{\gamma-1}\left(T_{f}-T_{i}\right)$

$$
=\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right)
$$

Compression-Work is done on the gasnegative

$$
W_{1}=-\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right)
$$

- Cylinder placed on high temperature reservoir
- $2\left(P_{2}, V_{2}, T_{H}\right)$
- Reversible Isothermal expansion is performed
- Volume Increases,
- Pressure decreases,
- Temperature constant
- $3\left(P_{3}, V_{3}, T_{H}\right)$

Isothermal Expansion (2-3)
Isothermal Work $=W_{2}=n R T \ln \left(\frac{V_{i}}{V_{f}}\right)$

$$
=R T_{H} \ln \left(\frac{V_{2}}{V_{3}}\right)=-R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)
$$

Expansion-Work is done by the gas-positive

$$
W_{2}=R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)
$$

- Cylinder placed on non-conducting stand
- $3\left(P_{3}, V_{3}, T_{H}\right)$
- Reversible Adiabatic expansion is performed
- Volume Increases,
- Pressure decreases,
- Temperature decreases
- $4\left(P_{4}, V_{4}, T_{L}\right)$

Adiabatic Expansion (3-4)

$$
\begin{aligned}
& \text { Adiabatic Work= } W_{3}=\frac{n R}{\gamma-1}\left(T_{f}-T_{i}\right) \\
& \qquad=\frac{R}{\gamma-1}\left(T_{L}-T_{H}\right)=-\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right)
\end{aligned}
$$

Expansion-Work is done by the gas-positive

$$
W_{3}=\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right)
$$

p

- Cylinder placed on low temperature reservoir
- $4\left(P_{4}, V_{4}, T_{L}\right)$
- Reversible Isothermal compression is performed
- Volume decreases,
- Pressure increases,
- Temperature constant

- $1\left(P_{1}, V_{1}, T_{L}\right)$

Isothermal Compression (4-1)
Isothermal Work= $W_{4}=n R T \ln \left(\frac{V_{i}}{V_{f}}\right)$

$$
=R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)
$$

Compression-Work is done on the gas-negative

$$
W_{4}=-R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)
$$

EfFICIENCY

- Net work done, $W=W_{1}+W_{2}+W_{3}+W_{4}$

$$
\begin{gathered}
W=-\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right)+R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)+\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right)+-R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right) \\
W=R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)-R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)
\end{gathered}
$$

Adiabatic Process

$$
\begin{equation*}
T_{L} V_{1}^{\gamma-1}=T_{H} V_{2}^{\gamma-1} \tag{1-2}
\end{equation*}
$$

(3-4)

$$
T_{L} V_{4}^{\gamma-1}=T_{H} V_{3}^{\gamma-1}
$$

$$
\frac{V_{4}}{V_{1}}=\frac{V_{3}}{V_{2}}
$$

$$
\begin{gathered}
W_{1}=-\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right) \\
W_{2}=R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right) \\
W_{3}=\frac{R}{\gamma-1}\left(T_{H}-T_{L}\right) \\
W_{4}=-R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)
\end{gathered}
$$

- Efficiency of heat engine, $\eta=\frac{|W|}{\left|Q_{H}\right|}=\frac{W}{W_{2}}$
- Since system is in contact with High temperature reservoir during Isothermal expansion (2-3), $\left|Q_{H}\right|=W_{2}$

$$
\begin{gathered}
\eta=\frac{R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)-R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)}{R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)} \\
\eta=\frac{R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)-R T_{L} \ln \left(\frac{V_{3}}{V_{2}}\right)}{R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)}=\frac{T_{H}-T_{L}}{T_{H}}=1-\frac{T_{L}}{T_{H}}
\end{gathered}
$$

CARNOT'S REFRIGERATOR

- Carnot cycle for engine performed in opposite direction-refrigeration cycle
- Co-efficient of Performance,
$\omega=\frac{\text { Cooling }}{\text { Input power }}=\frac{\left|Q_{L}\right|}{|W|}$
- Since system is in contact with

Low temperature reservoir during Isothermal compression
$(4-1),\left|Q_{L}\right|=W_{4}$

$$
\left|Q_{L}\right|+|W|=\left|Q_{H}\right|
$$

$$
\begin{gathered}
\omega=\frac{W_{4}}{|W|}=\frac{R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)}{R T_{H} \ln \left(\frac{V_{3}}{V_{2}}\right)-R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)} \\
=\frac{R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)}{R T_{H} \ln \left(\frac{V_{4}}{V_{1}}\right)-R T_{L} \ln \left(\frac{V_{4}}{V_{1}}\right)} \\
\omega=\frac{T_{L}}{T_{H}-T_{L}}=\frac{\left|Q_{L}\right|}{\left|Q_{H}\right|-\left|Q_{L}\right|}
\end{gathered}
$$

Carnot's Theorem and Corollary

- No heat engine operating between two given reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs
- Imagine
- A Carnot engine-R
- Irreversible engine-I

Absorbs heat $\left|Q_{H}\right|$ from High
Temperature Reservoir
Performs work $|W|$
Rejects heat $\left|Q_{L}\right|=\left|Q_{H}\right|-|W|$ to
Low Temperature Reservoir

Absorbs heat $\left|Q_{H}^{\prime}\right|$ from High Temperature Reservoir
Performs work $|W|$
Rejects heat $\left|Q_{L}^{\prime}\right|=\left|Q_{H}^{\prime}\right|-|W|$ to Low Temperature Reservoir
Efficiency, $\eta_{R}=\frac{|W|}{\left|Q_{H}\right|}$

$$
\eta_{I}=\frac{|W|}{\left|Q_{H}^{\prime}\right|}
$$

- Let us assume $\eta_{I}>\eta_{R}$

$$
\begin{aligned}
& \frac{|W|}{\left|Q_{H}^{\prime}\right|}>\frac{|W|}{\left|Q_{H}\right|} \\
& \left|Q_{H}\right|>\left|Q_{H}^{\prime}\right|
\end{aligned}
$$

$\left|Q_{H}\right|-\left|Q_{H}^{\prime}\right|$ is positive

- Let I drive R back ward as refrigerator
- I-Engine
- R-Refrigerator
- I\&R-Self acting machine

Carnot Refrigerator-R
Absorbs heat $\left|Q_{H}\right|-|W|$ from Low Temperature Reservoir
Work $|W|$ is done on the system
Rejects heat $\left|Q_{H}\right|$ to High Temperature Reservoir

Irreversible engine-I
Absorbs heat $\left|Q_{H}^{\prime}\right|$ from High Temperature Reservoir
Performs work $|W|$
Rejects heat $\left|Q_{L}^{\prime}\right|=\left|Q_{H}^{\prime}\right|-|W|$ to

Low Temperature Reservoir

Carnot
Refrigerator-R

Irreversible engine-I

Self acting machine

High temperature reservoir
Rejects heat $\left|Q_{H}\right|$
Absorbs heat $\left|Q_{H}^{\prime}\right|$
Rejects heat $\left|Q_{H}\right|-\left|Q_{H}^{\prime}\right|$

Work done
$|W|$ - on the system $|W|$-by the system $\quad|W|=0$
Low Temperature Reservoir

Absorbs heat
$\left|Q_{L}\right|=\left|Q_{H}\right|-|W|$

Rejects heat
$\left|Q_{L}^{\prime}\right|=\left|Q_{H}^{\prime}\right|-|W|$

Absorbs heat

$$
\left|Q_{L}\right|-\left|Q_{L}^{\prime}\right|=\left|Q_{H}\right|-\left|Q_{H}^{\prime}\right|
$$

- Self acting machine transfer $\left|Q_{H}\right|-\left|Q_{H}^{\prime}\right|$ heat from Low to high temperature reservoir without work
- Violates second law of thermodynamics
- So original assumption
- $\eta_{I}>\eta_{R}$ is false
- $\eta_{I} \leq \eta_{R}$

Corollary

- All Carnot engines operating between the same two reservoirs have the same efficiency
- Consider 2 Carnot engines $\mathrm{R}_{1} \& \mathrm{R}_{2}$

Case I

- Let R_{1} drive R_{2} back ward as refrigerator
- R_{1}-Engine
- R_{2}-Refrigerator
$\circ \mathrm{R}_{1} \& \mathrm{R}_{2}$-Self acting machine

- From Carnot's Theorem,

$$
\eta_{\mathrm{R}_{1}} \leq \eta_{\mathrm{R}_{2}}
$$

Carnot's Theorem

I-Engine
R-Refrigerator

$$
\eta_{I} \leq \eta_{R}
$$

Case II

- Let R_{2} drive R_{1} back ward as refrigerator
- R_{2}-Engine
- R_{1}-Refrigerator
$\circ \mathrm{R}_{1} \& \mathrm{R}_{2}$-Self acting machine

- From Carnot's Theorem,

$$
\eta_{\mathrm{R}_{2}} \leq \eta_{\mathrm{R}_{1}}
$$

Carnot's Theorem

I-Engine
R-Refrigerator

$$
\eta_{I} \leq \eta_{R}
$$

- Case I, $\quad \eta_{\mathrm{R}_{1}} \leq \eta_{\mathrm{R}_{2}}$
- Case II, $\quad \eta_{\mathrm{R}_{2}} \leq \eta_{\mathrm{R}_{1}}$
- To satisfy both cases, only possibility is equality

$$
\eta_{\mathrm{R}_{1}}=\eta_{\mathrm{R}_{2}}
$$

Why maximum efficiency for Carnot Engine?

- Efficiency of Carnot engine is independent of working substance
- The temperature of reservoirs remains same
- This is not practical case and that is why the efficiency of practical engines is less than theoretical Carnot engine

